Monday, July 29, 2013

Birds of America

Yesterday evening, I was watching another compelling BBC production, broadcast on Danish television: Earthflight, North America. In quite a unique way, the viewers got the rare opportunity to see through the eyes of birds such as eagles, geese, and pelicans and follow birds as they were migrating, escaping, hunting for prey, etc. It made me think of the 19th century masterpiece 'Birds of America' by John James Audubon, which can be viewed in the National History Museum in London. The book features 435 stunning hand-coloured plates that show birds life-size, in natural positions and in their natural habitat.

One of the things that I find interesting - and quite unexplored - is Blastocystis in birds. By 'unexplored' I mean that relatively little sampling has been done, and so the number of observations of Blastocystis in birds is still limited compared to other types of hosts. However, there is a brand new paper out in 'Infection, Genetics and Evolution' which includes observations on Blastocystis in birds (of America!).

You see, I was invited in on a study by colleagues in Colombia who had access to DNA from quite a few faecal samples from a number of host species, including feral birds, and what we found confirms the quite unambiguous trend seen so far: Birds - no matter where on this planet - appear to be colonised mainly by ST6 and ST7. As a matter of fact, in the present study only ST6 was seen in almost 50 Colombian passerine birds of varying species, most of which I believe are limited in geographical distribution to the Americas: Passer domesticus, Thraupis episcopus, Oryzoborus maximiliani, Sicalis flaveola, and Petrochelidon pyrrhonota. Moreover, only one allele of ST6, allele 122, was identified. Notably, the prevalence of Blastocystis in the sampled bird population was 90%. I believe that this is the first official report on Blastocystis in passeriformes. Other major groups of birds previously sampled include galliformes, anseriformes, and ratites (Stensvold et al., 2009; Alfellani et al., 2013).

Other subtypes have been reported in birds (Alfellani et al., 2013), but due to the very low number of samplings these subtypes may be more or less co-incidental/abberant findings. Of note, some samples from birds have been untypable. I have a slight recollection of detecting ST3 in Icelandic rock ptarmigans (in mixed ST infection) collected by Dr Karl Skírnission, but that certainly needs confirmation.

Bird contact/bird droppings - a significant source of Blastocystis in humans? Me feeding some 'Birds of Australia'. Photo by Dr Rebecca J Traub.

ST6 is very rarely seen in humans in Europe. In other parts of the world, for instance in Egypt and some Asian countries, ST6 appears relatively common, but we do not know much about 'bird subtypes' in those particular regions. Also, the situation in the US and Canada is more or less completely unknown (Blastocystis subtyping is something that appears not to attract research groups in North America apart from the one led by Dr Ron Fayer in Beltsville, Maryland).

ST7 is occasionally seen in humans in countries such as Sweden and Denmark. But in my - still limited - experience, individuals infected by these subtypes are not necessarily prone to 'suffer more' from intestinal symptoms than those who do not have these subtypes. While human cases of ST6 (and ST7) may represent cases of zoonotic transmission, it is far to early to draw any conclusions on this. It would be important to compare ST6 and ST7 18S alleles from humans and birds. MLST typing systems for these two subtypes are not yet available, but 18S analysis in itself may prove valuable for molecular epidemiological analyses as in the case of other subtypes (Stensvold et al., 2012).

Walton Ford: "Falling Bough" (Source). You will also see the now extinct Passenger Pigeon in 'Birds of America'.


Ramírez JD, Sánchez LV, Bautista DC, Corredor AF, Flórez AC, & Stensvold CR (2013). Blastocystis subtypes detected in humans and animals from Colombia. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases PMID: 23886615

Alfellani MA, Taner-Mulla D, Jacob AS, Imeede CA, Yoshikawa H, Stensvold CR, & Clark CG (2013). Genetic diversity of Blastocystis in livestock and zoo animals. Protist, 164 (4), 497-509 PMID: 23770574

Stensvold CR, Alfellani M, & Clark CG (2012). Levels of genetic diversity vary dramatically between Blastocystis subtypes. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12 (2), 263-73 PMID: 22116021

Stensvold CR, Alfellani MA, Nørskov-Lauritsen S, Prip K, Victory EL, Maddox C, Nielsen HV, & Clark CG (2009). Subtype distribution of Blastocystis isolates from synanthropic and zoo animals and identification of a new subtype. International Journal for Parasitology, 39 (4), 473-9 PMID: 18755193

Monday, July 22, 2013

My 'Thoughts on Blastocystis' now as eBook in Amazon!

I edited and assembled quite a few blog posts and published them as the eBook Thoughts on Blastocystis in Amazon! 

Buying it will set you back only about one pound, and even if you're completely broke, you may be able to borrow it through the Kindle Owners' Lending Library service. How cool is that?!

Anyway, the book summarises a lot of facts, thoughts, hypotheses and new research data on Blastocystis with a personal take here and there and also with parallels to other areas of clinical microbiology, gastroenterology and microbiomology. I hope you'll enjoy it!

Please also note that our review 'Recent Developments in Blastocystis Research' published in Advances in Parasitology Vol. 82 is also available for purchase in Amazon.


Clark CG, van der Giezen M, Alfellani MA, & Stensvold CR (2013). Recent developments in Blastocystis research. Advances in Parasitology, 82, 1-32 PMID: 23548084

Wednesday, July 17, 2013

ICOP XIV in Vancouver 28 July to 2 August 2013

The International Congress of Protistology (ICOP) takes place every four years, and so the 14th ICOP takes place from the 28th of July to the 2nd of August in Vancouver, Canada.

Most single-celled parasites infecting humans are known as 'protozoa', but Blastocystis does not belong to this group of organisms; meanwhile, protists comprise both protozoa along with a multitude of other very diverse species, including the Stramenopiles, to which Blastocystis belong. Protists include both uni- and multi-cellular eukaryotic organisms and are distinguished from animals, fungi and plants by a simpler cellular organisation.

The conference abstract book can be downloaded here, and presents a perplexing multitude of very interesting and diverse abstracts. There are four abstracts on Blastocystis alone, and two of them are presented by Dr Roger's group in Halifax, Canada + their international colleagues.

Phylogenomic analyses of large-scale alignments enable the outlining  of evolutionary relationship among major eukaryotic lineages and are highly facilitated by recent technological advances; several abstracts deal with such analyses. Eme et al. (Roger's group) present additional observations from an important phylogenomic study of Blastocystis sp. ST1 reiterating the importance of lateral gene transfer in enabling Blastocystis to adapt to a parasitic life style. Gentekaki et al. (Roger's group) present data on the draft genome of Blastocystis sp. ST1. Until recently, only one Blastocystis genome was available, namely that of ST7. The present data show remarkable differences between the ST1 draft genome and the ST7 genome. While the genome of ST7 comprises 18.8 MB, the genome of ST1 is only 14.0 MB long, and apparently there's  virtually no synteny among the two genomes! Almost 30% of the 5,637 predicted ST1 genes had no homologues in ST7. What is more: 'Orthologous proteins shared by the two genomes are only 51% identical on average. The predicted secreted protein repertoire also differs significantly; ST7 possesses ~300 whereas ST1-NandII has only 129.' Indeed, it appears that Blastocystis comprises some extremely diverse organisms! We are still trying to explore the clinical implications of this...

Alison Jacob, Graham Clark, and I contribute with an abstract on comparative analyses of 8 mitochondrion-like organelle (MLO) genomes from 5 subtypes. Contrary to the nuclear genomes, there is complete synteny and homology between the subtypes at MLO level, although the sequences diverge by up to 25%.

Tamalee Roberts and colleagues present data from analysis of 438 samples from a staggering 38 species in Australia. They found Blastocystis in 18 species, including kangaroos, wallaroos, snow leopard, and ostrich, and obtained subtype data from a total 80 samples.

The genetic universe of  Entamoeba is expanding quickly in these years. Silberman and colleagues (Arkansas, USA) provide data from analysis of Entamoeba from insects such as honeybees, cranefly larvae and multiple cockroach and beetle species. There is no information on any pathogenic properties of insect-infecting Entamoeba however.

The abstract book is also a place to learn that marine diatoms are responsible for about one-fifth of global photosynthesis (Armbrust, Seattle, USA) and that photosynthetic marine algae are responsible for 50% of global CO2 uptake (Worden, Moss Landing, USA).

There is quite a few abstracts on protist diversity and how NGS tools allow us to study this in a more comprehensive and exhaustive way and the need for taxonomic standardisation. Protist-barcoding includes metabarcoding (de Vargas, Roscoff, France) and some of the taxonomic challenges related to this are presented by Dr Pawlowski, Geneva, Switzerland.

Similar to Blastocystis, the trypanosomatids (Trypanosoma and Leishmania) cannot be classified according to morphology and host range, hence, molecular markers are warranted, and there's an abstract by Maslov (California, USA) on the general applicability of 'alternative barcoding', namely the use of Spliced Leader (SL) RNA gene repeats.

There is quite a few abstracts on 'rare ciliates' in harsh environments, and I bring your attention also to a previous blog post on extremophilic eukaryotes.

We also learn that free-living protozoa can tell us more about the origins of anaerobic parasites (Simpson, Halifax, Canada). And there is a group setting up a Plasmodium life cycle to study the metabolic steps critical to the malaria life cycle (McFadden, Melbourne, Australia).

There's a really teasing abstract on analysis of surface water samples from Italy, where Angelici et al. have developed a barcoding-like analysis based on ITS 2 and SSU rRNA genes to enable detection of parasites of clinical and epidemiological interest, but there is no information on how exactly the method was designed, and the authors do not list the parasites that they found... I'm not attending the congress myself, so here's hoping for some twitter updates on this...

One could go on and on, - why don't you have a look inside the abstract book yourself?!

Incidentally, Dr Tai from Vancouver, Canada, promts us to help protists getting into pop culture by wearing t-shirts silkscreened by hand using Ernst Haeckel's diagrams of phytoplankton and light micrographs of parabasalids! Don't know exactly how to get hold of these, but googling 'Ernst Haeckel' and 'phytoplankton' might get you started (go for Google images).

For those interested in protists (and art!), I recommend the blog 'The Ocelloid'. 

Suggested reading:

Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, Viscogliosi E, Brochier-Armanet C, Couloux A, Poulain J, Segurens B, Anthouard V, Texier C, Blot N, Poirier P, Ng GC, Tan KS, Artiguenave F, Jaillon O, Aury JM, Delbac F, Wincker P, Vivarès CP, & El Alaoui H (2011). Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biology, 12 (3) PMID: 21439036

Stensvold CR, Lebbad M, Victory EL, Verweij JJ, Tannich E, Alfellani M, Legarraga P, & Clark CG (2011). Increased sampling reveals novel lineages of Entamoeba: consequences of genetic diversity and host specificity for taxonomy and molecular detection. Protist, 162 (3), 525-41 PMID: 21295520

Wednesday, July 10, 2013

This Month In Blastocystis Research (JUL 2013)

The open access journal 'Tropical Parasitology' (published by the Indian Academy of Tropical Parasitology) has included a symposium on Blastocystis in their January-June (Vol. 3) issue (available here). The symposium comprises three papers; one is on "taxonomy, biology and virulence", the next is on genetic diversity and molecular methods for diagnosis and epidemiology, and the last one is on treatment controversies. I believe that it may take quite a while before these papers will appear in PubMed.

The first paper written by Drs Parija and Jeremiah sums up a few of the aspects related to (especially historical) taxonomic issues and very little on the actual biology of Blastocystis. Meanwhile, there is quite a substantial section on Blastocystis morphology. Regarding virulence, the authors mention the possibility that differences in virulence may be due to differences in subtypes, but that subtyping alone does not predict pathogenicity which in part may be due to varying levels of intra-subtype genetic variation. The authors also briefly mention some of the morphological and phenotypical observations that have been associated with 'pathogenic Blastocystis', such as the amoeboid stage, large cells, rough surface, slow growth rate, and increased binding to lectins. It is always interesting to speculate on such associations, but it must be kept in mind that results from in-vitro experiments may not necessarily reflect in-vivo situations.

One topic that keeps popping up in the literature - and also in two of the papers here in this symposium - is the possibility of 'amoebic forms' of Blastocystis being associated with symptomatic infection. This hypothesis was introduced in 2006 by Tan and Suresh, I believe; Scanlan (2013) speculated that amoeboid forms might be the nutrient acquiring form potentially selecting for bacterial virulence or certain bacterial communities through grazing; please go here for more thoughts from a previous blog post.

My own experience on Blastocystis morphology mainly stems from looking at cultures, and since we practically only get isolates from patients with gastrointestinal disease, I don't know what Blastocystis cultures from asymptomatic individuals look like. A dear colleague of mine - Marianne Lebbad, a brilliant Swedish parasitologist with many years in business - sent me the picture below (light microscopy of a faecal concentrate) and speculates that Blastocystis might be able to form groups/clusters of cells, maybe even with the ability to form a mono-layer on the surface of the gut mucosa? I've never observed the cluster formation in cultures, but then again, we have no idea of whether the stages seen in in vitro cultures (microaerophilic environment) are identical to the in vivo stages (strictly anaerobic), and exactly how Blastocystis lives and multiplies in the colon... Anyway, the idea of biofilm comes into mind. It would be nice to learn more from colleagues with a similar experience.

Light microscopy of Blastocystis apparently forming a cluster of cells; we wonder whether the cells are in fact 'glued' together and if so, how? Courtesy of Dr Marianne Lebbad.

Moving on to the next paper, this one was written by me and deals mostly with issues and developments within the field of diagnostics, molecular characterisation, and molecular epidemiology. The target audience comprises clinical microbiologists and those involved in Blastocystis epidemiology and genetic diversity research. Included is a table, which is basically a reproduction of the one included in the recent paper by Alfellani et al. (2013) displaying the distribution of subtypes in humans across different geographical regions. I hope that the open access feature of this paper will prompt even more researcher into Blastocystis epidemiology! At least it is currently listed on the site as 'popular'!

The third paper in the string is written by Drs Sekar and Shanthi. These authors put emphasis on the conspicuous lack of data on the metabolic processes of Blastocystis, making it difficult to establish how to best approach antibiotic intervention; we must anticipate that with more genomic and transcriptomic data analyses arriving within a foreseeable future we will soon know much more about this. They also reiterate what has been put forth by many, namely that differences in eradication may boil down to differences in drug susceptibility, which again may be due to a variety of reasons, including genetic diversity, which is extreme in Blastocystis.

According to these authors, 'therapy should be limited to patients with persistent symptoms subsequent to a complete work up for alternative etiologies'; at the present stage this appears sensible, although clinicians would probably appreciate a clearer definition of 'symptoms'!

The review goes through some of the drugs most commonly used for treating Blastocystis, including metronidazole, paromomycin and co-trimoxazole, but also includes a few data on the use of the probiotic Saccharomyces boulardii in attempts to eradicate Blastocystis. There is not very much on the mechanisms of drug action, - it's more like a summary of data coming out from different studies, including the few placebo-controlled ones.
Regarding co-trimoxazole (which is also known as 'Bactrim' or 'Septra') this drug combo is often administered to HIV-patients prophylactically against Pneumocystis. In a study of parasites in Danish HIV patients, only 6/96 patients were given co-trimoxazole (unpublished data); two of these patients had Blastocystis. Hence, one 'alternative' way of finding out about the efficacy of co-trimoxazole on Blatocystis is to test the stools from patients undergoing long-term Pneumocystis prophylaxis comparing these patients to a cohort not receiving Pneumocystis prophylaxis but otherwise similar.

I find it a bit peculiar though to go through a review on treatment data that does not at one single point mention the need for sensitive diagnostics when evaluating courses of treatment and the identification of carriers and non-carriers. Also, there are some passages which are quite difficult for me to follow, for instance p. 36, second column, bottom section.

I hope that this symposium will inspire some of our colleagues and contribute to an increased understanding of Blastocystis.



Parija SC & Jeremiah SS (2013). Blastocystis: Taxonomy, biology and virulence Tropical Parasitology DOI: 10.4103/2229-5070.113894
Stensvold CR (2013). Blastocystis: Genetic diversity and molecular methods for diagnosis and epidemiology Tropical Parasitology DOI: 10.4103/2229-5070.113896  

Sekar U & Shanthi M (2013). Blastocystis: Consensus of treatment and controversies Tropical Parasitology DOI: 10.4103/2229-5070.113901


Scanlan PD (2012). Blastocystis: past pitfalls and future perspectives. Trends in parasitology, 28 (8), 327-34 PMID: 22738855

Stensvold CR, Nielsen SD, Badsberg JH, Engberg J, Friis-Møller N, Nielsen SS, Nielsen HV, & Friis-Møller A (2011). The prevalence and clinical significance of intestinal parasites in HIV-infected patients in Denmark. Scandinavian Journal of Infectious Diseases, 43 (2), 129-35 PMID: 20936912  

Tan TC & Suresh KG (2006). Predominance of amoeboid forms of Blastocystis hominis in isolates from symptomatic patients. Parasitology Research, 98 (3), 189-93 PMID: 16323025

Friday, June 21, 2013

This Month In Blastocystis Research (JUN 2013)

Another paper in the string of publications coming out from the PhD study by Dr Alfellani (London School of Hygiene and Tropical Medicine) has just appeared in PubMed.

Dr Alfellani and his colleagues have done a great job in analysing a multitude of samples from humans, non-human primates and animals; I have previously blogged about their observations from studies of human and non-human primates. Moreover, they have surveyed available data in order to better discuss their own findings, and the work has contributed significantly to what today is known about the host specificity, genetic diversity, phylogeography and general molecular epidemiology of Blastocystis.

Alfellani's most recent paper is published in the journal Protist, and it deals with the 'Genetic Diversity of Blastocystis in Livestock and Zoo Animals'.

It is quite a large paper which includes a lot of new information and a comprehensive (and hopefully exhaustive) table summarising Blastocystis subtype data in all relevant hosts (humans, non-human primates, other mammals and birds).

I will highlight a couple of things from the paper:

1. Apart from reporting on virtually complete SSU rDNA sequences from a couple of subtypes for which entire SSU rDNA sequences have yet not been available, we also report on three novel subtypes. Until recently, we only knew about 14 subtypes (ST1-ST14), of which ST1-ST9 can be found in humans. Now, three additional subtypes have been identified; ST15 in artiodactyls (camel and sheep) and non-human primates (chimpanzee and gibbon), ST16 in kangaroos, and ST17 in gundis.

The Gundi (Ctenodactylus gundi) is a rodent living mainly in the deserts of Northern Africa. (Source)

2. Novel data arising from analysis of faecal samples from humans and animals in Sebha, Libya, strongly indicate that humans and animals in this area are infected by different subtypes: Humans appear to carry ST1, ST2, and ST3, while synanthropic animals (artiodactyls in this case) mostly have ST5 and ST10 infections, suggesting that livestock is not a major contributor to human Blastocystis infection.

To this end, there is growing evidence of quite a substantial degree of host specificity of Blastocystis.  Even when subtypes overlap between humans and animals, we have accumulating evidence that the strains found in humans and animals are different. This means that the hypothesis that animals constitute an important reservoir of human Blastocystis infections currently has very limited support. It is my clear impression that when a strain of ST6 or ST8 is detected in humans, this strain has most probably been transmitted from an animal source. But we very rarely see these subtypes in humans, at least in Europeans.

It will be extremely interesting to see how the universe of Blastocystis subtypes unfolds... by genetically characterising strains in humans and non-human hosts, we are building up a clearer picture of transmission patterns and evolutionary biology, including our adaptation to Blastocystis, and the parasite's adaptation to us and other hosts.

It is noteworthy that we are starting to see different subtypes in rodents. We have previously thought that generally, rodents were infected by ST4. But now we know that many rodents are not infected, and we also know that rodents may harbour subtypes other than ST4.

So,17 subtypes of Blastocystis are now known. We have probably only seen the top of the iceberg, since many host species have not yet been sampled from, and it is likely that we will see quite a few STs being identified in the nearest future. To this end it is necessary to have a consensus regarding the identification of novel subtypes. Along with the Protist paper we have uploaded a supplementary file (Appendix A, TXT format) with aligned reference sequences that can be used for phylogenetic analysis,  hoping that it will be useful to our colleagues. In a future blog post I will try to address the issues of identifying new subtypes more specifically.

ST15 is one of the more interesting subtypes since it appears to have quite a low host specificity - infecting both non-human primates and artiodactyls. Yet, we have come across it only now. ST15 and ST17 are remarkable in the way that they appear to be closer related to herptile and arthropod lineages, respectively, than to lineages from mammals.

Please note that virtually complete sequences of ST10, ST13, ST14, ST15, and ST17 analysed in the study have been released in GenBank just now.

Further reading:

Alfellani MA, Taner-Mulla D, Jacob AS, Imeede CA, Yoshikawa H, Stensvold CR, & Clark CG (2013). Genetic Diversity of Blastocystis in Livestock and Zoo Animals. Protist, 164 (4), 497-509 PMID: 23770574

Alfellani MA, Stensvold CR, Vidal-Lapiedra A, Onuoha ES, Fagbenro-Beyioku AF, & Clark CG (2013). Variable geographic distribution of Blastocystis subtypes and its potential implications. Acta Tropica, 126 (1), 11-8 PMID: 23290980

Alfellani MA, Jacob AS, Perea NO, Krecek RC, Taner-Mulla D, Verweij JJ, Levecke B, Tannich E, Clark CG, & Stensvold CR (2013). Diversity and distribution of Blastocystis sp. subtypes in non-human primates. Parasitology, 140 (8), 966-71 PMID: 23561720

Saturday, June 15, 2013

Blastocystis - 'Monsters Inside Me'

I woke up this morning, grabbed my smartphone and went on to check my Blastocystis Google Alert. There was one entry, and this was the one:

Now, I could probably do a post with hundreds of examples showing how the internet abounds with material that may misguide/misinform people on Blastocystis pathogenicity. As such, this video is a nice example of how you can diligently manipulate people into thinking that severe, debilitating disease can be caused by Blastocystis.

Now, before I move on, I have to say that if this is a documentary, I'm very sorry for the couple in this video who have suffered the pain and consequences of sudden debilitating illness. Precautions have to be taken when you are exposed to sewage to avoid contracting infections.

The symptoms that are described in the video - including the weight loss - could be attributable to many different bacterial and viral pathogens, even parasites such as Cryptosporidium and maybe also Giardia; to this end, the video provides us with no information on other pathogens found in the patient's stool. Even in the event that Blastocystis was the only potential pathogen found, other pathogens may have been overlooked if sensitive diagnostics were not taken into use.

It is possible that Bill Wilson contracted Blastocystis only after signing on to his plumbing contract, but it is also possible that he had it a long time before. Many of us (up to 30% of the healthy Danish population) are colonised, and colonisation is often chronic.

We are informed that the patient receives a course of metronidazole, a drug that is often used to treat Blastocystis, but which in fact has a limited efficacy in vivo when used alone. Bill apparently clears his symptoms after metronidazole treatment, but we do not know whether in fact Bill also clears his Blastocystis infection, which could be determined by post-treatment stool tests. Metronidazole is capable of clearing a large number of anaerobic bacterial and protozoan species, and it is not unlikely that the drug has eradicated one or more pathogens that Bill could have contracted during his work (or elsewhere), and so symptom relief may be due to clearance of a non-Blastocystis pathogen instead.

Finally, it may be so that symptom disappearance coincides with spontaneous pathogen resolution. Cryptosporidiosis, for instance, can cause quite debilitating disease even in immunocompetent individuals, causing the infected individuals to lose a lot of water due to diarrhoea lasting for days or even weeks, but the disease is usually self-limiting.

So, this video tells a story that makes the audience automatically think that Bill Wilson's disease is due to Blastocystis. Apart from the statement 'Complications from a Blastocystis hominis infection can be fatal' and the explanation of how metronidazole works on Blastocystis, there is not really any statements or information in the video that do not make sense; the video is just put together in a way so that the viewer automatically deduces that Blastocystis is the culprit. A diligent act of manipulation!

Please note that this post is about how information on Blastocystis can be conveyed to an audience and not about the particular case as such.


Stensvold CR, Smith HV, Nagel R, Olsen KE, & Traub RJ (2010). Eradication of Blastocystis carriage with antimicrobials: reality or delusion? Journal of clinical gastroenterology, 44 (2), 85-90 PMID: 19834337

Saturday, May 25, 2013

This Month in Blastocystis Research (MAY 2013)

Now, we have a situation. Last month, I came up with the idea of the post series 'This Month in Blastocystis Research' developed for discussing a couple of papers on Blastocystis appearing recently in pubmed. However, this month only one Blastocystis release has emerged. It is in Turkish with an English abstract and so I'm not in the optimum position to review it. Overall, I'm not entirely clear on why the authors have chosen to publish the work. The paper is apparently about PCR amplification of Blastocystis specific DNA (using the barcoding primers) with subsequent cloning with a view to producing subtype information that could have been obtained simply by direct sequencing. At least when the goal is to subtype a particular positive sample, PCR + sequencing should suffice. Obviously, if you want to explore intra-subtype diversity, cloning is very useful. But it is time consuming for subtyping and also expensive. Therefore, for plain subtyping, I recommend the protocol that I put out on youtube a few weeks ago. The phylogenetic tree produced by the authors looks unfamiliar to me in that the clustering of the subtypes is quite different from the phylogenies inferred by other groups; this should not have anything to do with the SSU rDNA region explored; rather it may boil down to issues with alignment editing or the algorithm chosen for phylogenetic analysis. Well, we should be looking forward to more subtype data from Turkey! Incidentally, I was once involved in a Turkish study where we found ST1, ST2 and ST3 mainly, while ST4 was rare.

Since there are no other papers to discuss, I will try and compensate by providing a link to 'This Week in Parasitism' hosted by Vincent Racaniello and Dickson Despommier, who are going through a case of Blastocystis possibly contracted abroad during a field trip to Bali. Now, there's a lot of digression in this pod cast (some of which is actually quite enjoyable). Also, I do not agree with all the things said about Blastocystis in this conversation. If you cannot make the link work, you can access the podcast directly here

I do think it's a bit strange though that given the clinical focus of the talk, there is not a single word on paromomycin. But I guess the overall take home message is that treating Blastocystis is really difficult, and no single type of therapeutic intervention is consistently efficacious. Unfortunately, the two gentlemen do not touch upon the genetic diversity of Blastocystis, which is probably one of the most interesting things about Blastocystis currently known, and which may also be part of the reason why no single treatment modality seems to work every single time.

I wonder whether Blastocystis will always be stuck in shades of grey... or whether at some point we'll be able to make some clear-cut conclusions that will be useful for clinicians and clinical microbiologists...? I hope! And I believe we are certainly on our way!

Anyway, enjoy a bit of Blastocystis causerie!

Suggested reading:
Sakalar C, Uyar Y, Yürürdurmaz MA, Tokar S, Yeşilkaya H, Gürbüz E, Kuk S, & Yazar S (2013). [Cloning of Blastocystis sp Subtype 3 Small-subunit Ribosomal DNA]. Turkiye Parazitolojii Dergisi / Turkiye Parazitoloji Dernegi = Acta Parasitologica Turcica / Turkish Society for Parasitology, 37 (1), 13-8 PMID: 23619039

Ozyurt M, Kurt O, Mølbak K, Nielsen HV, Haznedaroglu T, & Stensvold CR (2008). Molecular epidemiology of Blastocystis infections in Turkey. Parasitology International, 57 (3), 300-6 PMID: 18337161

Nature Editorial (2013). Shades of grey Nature, 497 (7450), 410-410 DOI: 10.1038/497410a

Friday, May 17, 2013

Abstract Submission Deadline for the European Congress on Tropical Medicine and International Health Extended!

Just a notification about the extended abstract submission deadline for the 8th European Congress on Tropical Medicine and International Health which is now 20th of May, 2013. Her Royal Highness Crown Princess Mary of Denmark is Patron of the conference, which will take place 10-13 September, 2013, in Copenhagen.

The 5th Conference of the Scandinavian-Baltic Society for Parasitology will be held in conjunction with the TM&IH meeting.

Hope to see you at the conference... Unconfirmed rumours have it that quite a few Blastocystis abstracts have been accepted already...

To submit an abstract, please go here. So, please hurry up and submit!

Wednesday, May 15, 2013

Wrap-Up of Cell Symposium on Microbiome and Host Health

For a parasitologist with a major interest in novel technology like me the Cell Symposium on Microbiome and Host Health (#CMHH) was a challenging, yet stimulating tour de force in bacteriology and immunology, and I realise that gut fungi and protists still fly below the radar of intestinal microbiome research.

The announced line-up of speakers was impressive, and although we missed e.g. Drs Peter Turnbaugh and Fergus Shanahan, we were still spoiled with brilliant talks.

Most of the projects and results presented on the meeting were based on studies on bacterial diversity and structure by either targeted 16S 454 sequencing or metagenomics, while studies of gene function and the 'super-organism' that is the complete microbiome (including the  fungome and protistome I should say, since these genomes are much larger than bacterial ones) were still scarce if represented at all.

Since my focus is on intestinal parasites, my main interest in the vast universe of the human microbiome naturally orbits around the intestinal microbiome. Although there is still a long way to go - due to e.g. significant differences in methodologies and lack of consensus on the analytical basis for 'enterotypes'  - we are slowly but steadily building up a picture of the effect that the human microbiome has on health and disease. Hundreds of species live and have important functions in our gut, to cite Dr Peer Bork, but these species have also been associated with more than 30 human diseases, even neurological ones. Shifts in the composition of the microbiome are associated with an expanding list of chronic diseases that includes obesity, inflammatory bowel disease, and diabetes (Dr Ruth Ley).

Many things may influence our susceptibility to intestinal pathogens, including competition between species (colonisation resistance), the ability of some bacteria to synthesise antimicrobial compounds or stimulate innate immune defenses. Differences in susceptibility to infection may boil down to differences in antimicrobial compounds secreted by our individual microbiota (Dr Michael Fischbach). Bacteroides fragilis is a commensal immunoregulatory microbe mediating major effects through a single molecule, polysaccharide A (Dr Dennis Kasper); polysaccharide A mediates immunoregulation via innate and cognate immune system collaboration.

The list of buzz words was endless, and patterns of cause and effect in this fascinating hubbub of cutting edge science difficult to keep apart - but then again, - many pathways and interactions leading to alterations in gut flora and thereby alteration in host clinical phenotype may result from the complex interplay of any type of intervention (diet, antibiotics, surgery (gastric bypass), microbe exposure, etc.) and host genetics. Dr Wendy Garrett used some of her time to address the fact that antibiotic treatment may lead to more significant perturbation of the intestinal microbiota than e.g. diets and immunoregulation, and she also encouraged thoughts on how to approach causality in studies of microbial communities.

Other things that are interesting include how bacteria "talk" together by quorum sensing to control gene expression and crosstalk between beneficial bacteria (e.g. probiotics) and the intestinal ecosystem, and how these systems can be influenced altogether.

Computer technology - the Creed of today: The Barcelona Supercomputing Centre (with 'Mare Nostrum') located in a former chapel. Source.

So, while focus is still on the trillions of bacteria we have in our gut, we hope that it won't be long before common eukaryotic components of the intestinal microbiome will be studied and analysed alongside with bacterial communities. It says on Wikipedia that targeted studies of eukaryotic and viral communities are limited and subject to the challenge of excluding host DNA from amplification and the reduced eukaryotic and viral biomass in the human microbiome. Excluding host DNA is challenging, but not impossible, and who has actually documented that eukaryotic biomass in the human microbiome is 'reduced'?

The meeting was very well organised and took place at the Sheraton Hotel in Lisbon. I've storified a list of the #CMHH tweets here in case you are interested in more 'headlines'. I apologise for any misquotes.

Further reading:

Koren O, Knights D, Gonzalez A, Waldron L, Segata N, Knight R, Huttenhower C, & Ley RE (2013). A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Computational Biology, 9 (1) PMID: 23326225

Andersen LO, Vedel Nielsen H, & Stensvold CR (2013). Waiting for the human intestinal Eukaryotome. The ISME Journal PMID: 23407309

Ivanov II, & Honda K (2012). Intestinal commensal microbes as immune modulators. Cell Host & Microbe, 12 (4), 496-508 PMID: 23084918

Brown J, de Vos WM, Distefano PS, Doré J, Huttenhower C, Knight R, Lawley TD, Raes J, & Turnbaugh P (2013). Translating the human microbiome. Nature Biotechnology, 31 (4), 304-8 PMID: 23563424

Blaser M, Bork P, Fraser C, Knight R, & Wang J (2013). The microbiome explored: recent insights and future challenges. Nature Reviews. Microbiology, 11 (3), 213-7 PMID: 23377500

Friday, May 10, 2013

Cell Symposium: Microbiome & Host Health - Lisbon 2013

My colleagues from Statens Serum Institut and I are heading to Lisbon, Portugal, tomorrow morning to attend the Cell Symposium on Microbiome and Host Health (link may be really busy now).

We are bringing a poster displaying some of our work related to our GUT18S project: A Novel Approach For Eukaryotic Phylogenetic Interrogation Of Clinical Samples Using Next Generation Sequencing Of SSU rRNA Genes; a pdf version of the poster can be downloaded here.

The GUT18S work is partly funded by the Marie Curie Actions (FP7) program.