Showing posts with label real-time PCR. Show all posts
Showing posts with label real-time PCR. Show all posts

Monday, October 5, 2015

This Month in Blastocystis Research (SEP 2015)

The month of September saw the publication of the first data on Blastocystis subtypes going out from Qatar. Abu-Madi and colleagues--who have already been quite prolific in terms of surveying intestinal parasitic infections in Qatar--studied the positive rate of Blastocystis in 608 apparently healthy subjects arriving in Qatar for the first time, identifying a prevalence of 71% as identified by PCR. Strikingly, the positive rate by microscopy of the corresponding samples was only 7%. Three subtypes were idenfied, with ST3 being the most common subtype, followed in prevalence by ST1 and ST2. The study is important for at least two reasons: It confirms the drawback of basing Blastocystis epidemiological research on data generated using microscopy alone, and it confirms the virtual absence of ST4 outside of Europe.

Increased sensitivity of PCR relative to microscopy was also confirmed in a study carried out in Malaysia (I presume) by Ragavan and colleagues. This group surveyed the Blastocystis positivity rate among IBS and non-IBS patients analyzing colonic aspirates, including a total of 109 individuals. Given the data available on Blastocystis prevalence, I was quite surprised to learn that this group failed to detect Blastocystis in any of the samples by microscopy and culture. Using PCR (the subtype-specific [STS] primers were used as diagnostic primers), the group identified Blastocystis in 6 IBS patients and 4 non-IBS patients. Also these figures appear quite low. However, there is very little information available on the non-IBS patients, and since all study individuals were subject to colonscopy, this group of individuals might be suffering chronic and potentially severe intestinal disease, including for instance colorectal cancer, inflammatory bowel disease, etc., which would explain the low prevalence of Blastocystis observed among these individuals. Indeed, evidence is accumulating that the more "gut healthy" you are, the larger the probability of being Blastocystis-positive. I noticed that the colonic aspirates were spun down using 3,000 rpm prior to culture and microscopy; this process might have had an impact on cell viability and morphology; still, DNA should be detectable following this process. Meanwhile, we recently showed (Scanlan et al., 2015) that the sensitivity of the STS primers is relatively low, which is why the use of real-time PCR is recommendable for PCR-based screening. To see an example of how the STS primers perform relative to barcoding primers, go here (Suppl Table 2).
Moreover, care should be taken when reading this paper, since I'm fairly convinced that the subtype terminology used in the study is different from the consensus terminology (Stensvold et al., 2007). It says that the subtypes detected included ST2, ST3, ST4, and ST5; if this reflects the terminology that went along with the original description of the STS primers, these subtypes correspond to ST7, ST3, ST6, and ST2, which to me would be a more likely subtype distribution, taking this particular region into consideration, and given the fact that ST5 appears to be extremely rare in humans. 

It's always interesting to expand on the natural host spectrum of Blastocystis. The parasite has been found in a perplexing array of hosts, but some host specificity has been observed. When it comes to animals held by humans as livestock or pets, we know that pigs and cattle are commonly, if not consistently, colonised by Blastocystis with some quite specific subtypes. With regard to pets, dogs and cats have been found positive, but there seems to be increasing evidence that these animals are not natural hosts (see also Wang et al., 2013). Osman and colleagues, recently published a survey on Cryptosporidium and Blastocystis in dogs using sensitive molecular methods, demonstrating a prevalence of Blastocystis of only about 3%. Moreover, the subtypes 2 and 10 were found, and ST10 is found mostly in cattle, and never before in dogs, as far as I know, which could suggest accidental colonisation - and possibly not a very long-lasting one. Similarly, when humans are found to be colonised with subtypes rarely found in humans, such as ST6, ST7, and ST8, it would be interesting to know for how long these subtypes are capable of "staying put" in the human intestine.


Abu-Madi M, Aly M, Behnke JM, Clark CG, & Balkhy H (2015). The distribution of Blastocystis subtypes in isolates from Qatar. Parasites & Vectors, 8 PMID: 26384209

Osman M, Bories J, El Safadi D, Poirel MT, Gantois N, Benamrouz-Vanneste S, Delhaes L, Hugonnard M, Certad G, Zenner L, & Viscogliosi E (2015). Prevalence and genetic diversity of the intestinal parasites Blastocystis sp. and Cryptosporidium spp. in household dogs in France and evaluation of zoonotic transmission risk. Veterinary Parasitology PMID: 26395822   

Ragavan, N., Kumar, S., Chye, T., Mahadeva, S., & Shiaw-Hooi, H. (2015). Blastocystis sp. in Irritable Bowel Syndrome (IBS) - Detection in Stool Aspirates during Colonoscopy PLOS ONE, 10 (9) DOI: 10.1371/journal.pone.0121173  

Scanlan PD, Stensvold CR, & Cotter PD (2015). Development and Application of a Blastocystis Subtype-Specific PCR Assay Reveals that Mixed-Subtype Infections Are Common in a Healthy Human Population. Applied and Environmental Microbiology, 81 (12), 4071-6 PMID: 25841010   

Stensvold CR, Suresh GK, Tan KS, Thompson RC, Traub RJ, Viscogliosi E, Yoshikawa H, & Clark CG (2007). Terminology for Blastocystis subtypes--a consensus. Trends in Parasitology, 23 (3), 93-6 PMID: 17241816

Wang W, Cuttell L, Bielefeldt-Ohmann H, Inpankaew T, Owen H, & Traub RJ (2013). Diversity of Blastocystis subtypes in dogs in different geographical settings. Parasites & vectors, 6 PMID: 23883734

Sunday, November 3, 2013

This Month in Blastocystis Research (OCT 2013)

Thanks to Google Scholar and PubMed feeds I can keep myself relatively up-to-date with emerging Blastocystis data and 'breaking news' in the field.

One of things that have caught my attention recently, is the string of foodborne outbreaks in Sweden, due to Cryptosporidium, Cyclospora and microsporidia stemming from (presumably) imported produce. A few of my colleagues (Robertsen et al., in press) have just published a large review on the impact of globalisation on foodborne parasites - a resource that has been a long time coming, and which I hope will be read and contemplated by many. The review includes a table on parasites isolated from fresh produce (for some reason the Swedish data was not included), and among these is Blastocystis, which was identified in fresh produce from Saudi Arabia (original data published by Al-Binali et al., 2006). Apart from this, hardly any data is out there on Blastocystis in the environment, and we therefore still know very little about potential sources of transmission and how we are exposed.

In Clinical Microbiology and Infection there is a paper out by Mass et al. on detection of intestinal protozoa in paediatric patients with gastrointestinal symptoms by multiplex real-time PCR. Not surprisingly, the study is from The Netherlands, the cradle of real-time PCR-based parasite diagnostics in clinical microbiology. It's a great paper despite all its limitations, but I couldn't figure out which Blastocystis PCR they used for the study, - I think the authors failed to provide a reference for it. Anyway, the authors found 30% of the children colonised by Blastocystis, while Dientamoeba fragilis was found in a staggering 62%, which is more or less equivalent to what we see in Denmark in this type of cohort (please refer to previous blog post on Dientamoeba fragilis). It appeared that symptom resolution was just as common in patients who were treated with different antibiotics as in patients who were not treated, and the authors end up by highlighting the fact that it is still difficult to know whom and when to test for these parasites, and when to treat them.

In Mexico, Sanchez-Aguillon and colleagues have documented a very nice study on parasitic infections in a Mexican HIV/AIDS cohort. Quite a few of the patients had Cryptosporidium, Cyclospora or Cystoisospora, the presence of which was - not surprisingly - associated with diarrhoea. Table 1 in the paper is a bit confusing, but I believe that Blastocystis was found in about 30%; of note, only ST1 and ST3 were found, adding further support to the hypothesis that ST1 and ST3 are common in most parts of the world, while especially ST4 exhibits vast differences in geographic 'affinity'. The authors end their paper by saying
"Other molecular markers for Blastocystis ST should be studied to elucidate the complexity of this heterogeneous genus and its role in human disease."
Let me just add that subtype identification is a valid proxy for intra-generic diversity in Blastocystis, - we have been looking at mitochondrial genomes and found that analyses based on mitochondrial markers and ribosomal genes reveal similar phylogenetic relationships. So, in terms of transmission and epidemiology in general, the subtyping system ('barcoding') is highly applicable and robust. It is true, however, that we need to see if we can identify specific genes potentially responsible for pathogenesis. The Mexican paper can be accessed here.

There's a very nice paper out now from the Swiss Tropical and Public Health Institute and University of Basel on differential diagnoses of common dermatological problems in returning travellers. Blastocystis has been included in the list (in the section on allergic skin reactions/urticaria) together with a plethora of other infectious agents. Lots of informative images there, and the paper has a nice structure.

Despite loads of daily feeds, a lot of papers relevant to Blastocystis research still escape my attention. I realise that there was a paper out in PLoS Genetics in June on Saprolegnia parasitica (an oomocyte parasitising on fish) which appears to be a good and interesting read. Maybe I'll come back to this one!

For me personally, this month in Blastocystis research has been a month of putting together grant proposals - more so now than usual -, many initiatives are being taken, networks are being expanded, and interesting data are accumulating from various projects... I hope to be back with details on some of this soon!


Maas L, Dorigo-Zetsma JW, de Groot CJ, Bouter S, Plötz FB, & van Ewijk BE (2013). Detection of intestinal protozoa in paediatric patients with gastrointestinal symptoms by multiplex real-time PCR. Clinical Microbiology and Infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases PMID: 24131443

Fabiola Sanchez-Aguillon, Eduardo Lopez-Escamilla, Francisco Velez-Perez, Williams Arony Martinez-Flores, Patricia Rodriguez-Zulueta, Joel Martinez-Ocaña, Fernando Martinez-Hernandez, Mirza Romero-Valdovinos, Pablo Maravilla (2013). Parasitic infections in a Mexican HIV/AIDS cohort. The Journal of Infection in Developing Countries PMID: 24129632 

Neumayr A, Hatz C, Blum J. In Press. Not be missed! Differential Diagnoses of Common Dermatological Problems in Returning Travellers. Travel Medicine and Infectious Disease.

Robertson LJ, Sprong H, Ortega YR, van der Giessen JW, Fayer R. In Press. Impact of globalisation on foodborne parasites. Trends in Parasitology

Wednesday, October 16, 2013

Dying to know about Dientamoeba?

It's difficult to say 'Blastocystis' without saying 'Dientamoeba fragilis'. Both parasites tend to be extremely common in countries where other intestinal parasites (e.g. Entamoeba, Giardia, Cryptosporidium) are of low endemic occurrence, and they are often seen together in patient samples. It is only due to the recent introduction of DNA-based diagnostic methods (PCR) that we now know that these parasites are much more common than previously anticipated.

So, while I'm trying to encourage guest bloggers, I thought I'd introduce a 'guest star' - Dientamoeba!

Dientamoeba fragilis trophozoites with the characteristic binucleated feature.
The parasite belongs to the trichomonads, which also comprise parasites such as Histomonas meleagridis (the cause of 'blackhead disease' in turkeys) and - more distantly - Trichomonas vaginalis.

At our Parasitology Lab at Statens Serum Institut in Copenhagen we have been using real-time PCR for specific detection of Dientamoeba fragilis in faecal samples from patients with gastrointestinal symptoms for quite a few years now. In the period of 2008-2011 we analysed 22,484 stool samples for D. fragilis. The overall prevalence of the parasite in these samples was 43% but depended mainly on age (Figure 1). D. fragilis prevalence appears to fluctuate dramatically depending on the age group. Highest prevalence was seen among 7-year-olds, and a second 'peak' is seen in the parental age suggesting that infected children pass on infections to their parents. 

Figure 1:  Prevalence of D. fragilis as a function of age. (For more information, see Röser et al., 2013b).

Intestinal protozoa are transmitted faecal-orally and most of them have a cyst stage. However, a few protozoa appear not to have a cyst stage, among them D. fragilis. There is a lot of evidence that Histomonas meleagridis is transmitted by eggs of Heterakis gallinae, a nematode of galliform birds. Conspicuously, we recently demonstrated the presence of D. fragilis DNA in surface-sterilised eggs of Enterobius vermicularis (pinworm). The implications of this finding are unclear but could suggest a similar vector-borne transmission of D. fragilis.

As in so many other situations it is not possible to dish out simple guidelines as to when to test for and treat D. fragilis. It is clear that many carriers experience few or no symptoms at all, but there are several case reports demonstrating symptom relief in patients eradicated of D. fragilis. We published one such case recently in 'Ugeskrift for Læger' - the journal of the Danish Medical Association. Basically, the report describes lasting symptom relief after documented eradication of D. fragilis using high dose metronidazole. However, the patient's symptoms returned after a year, and  real-time PCR revealed D. fragilis positive stools. Eradication was achieved using paromomycin (250 mg x 3 for nine days).

Contrary to Blastocystis, this parasite exhibits remarkably limited genetic diversity. We recently analysed three different genetic loci (18S, actin, elongation factor 1-alpha), and we confirmed that only 2 genotypes exist, one of which is very rare. Genetically, however, the two genotypes are quite different, and it will be interesting to compare the nuclear genomes of the two, once they have become available.

Dientamoeba has been speculated to be a neglected cause/differential diagnosis of irritable bowel syndrome (IBS). We once found a statistical significant association between IBS and Dientamoeba; however, other more recent and more targeted studies (one of which is ongoing) have not confirmed this association. However, multiple factors could interact and analysing only simple associations such as symptoms related to parasite presence/absence may be a limiting approach; for instance, infection load/intensity may play a role, and other factors such as host genetics/susceptibility and microbiota ecology may be significant factors influencing on clinical outcome as well. On that note, we have observed some very low Ct values in our real-time PCR results for some of our D. fragilis positive patients, suggesting massive infections. D. fragilis infections are probably often long lasting (months), and if symptoms appear in the initial phase of infection only, cross-sectional studies of prevalence and clinical presentation will be potentially misleading. Large longitudinal cohort studies of pre-school children with monitoring of incidence of pinworm and D. fragilis infections would be extremely informative.

Dr Dennis Röser here at the SSI is currently finishing a randomised controlled treatment trial of D. fragilis in children, testing the clinical efficacy of metronidazole treatment versus placebo. Results are expected next year, so watch out for a 'D. fragilis special' by Dr Röser in 2014! It appears a lot easier to eradicate D. fragilis than Blastocystis - at least on a short term basis with metronidazole having an efficacy of about 70% or so (unconfirmed).

A couple of reviews free for download are available; please see literature list below or go here and here.

Suggested literature

Engsbro AL, Stensvold CR, Nielsen HV, & Bytzer P (2012). Treatment of Dientamoeba fragilis in patients with irritable bowel syndrome. The American Journal of Tropical Medicine and Hygiene, 87 (6), 1046-52 PMID: 23091195   

Johnson EH, Windsor JJ, & Clark CG (2004). Emerging from obscurity: biological, clinical, and diagnostic aspects of Dientamoeba fragilis. Clinical Microbiology Reviews, 17 (3) PMID: 15258093

Ogren J, Dienus O, Löfgren S, Iveroth P, & Matussek A (2013). Dientamoeba fragilis DNA detection in Enterobius vermicularis eggs. Pathogens and Disease PMID: 23893951  

Röser D, Nejsum P, Carlsgart AJ, Nielsen HV, & Stensvold CR (2013a). DNA of Dientamoeba fragilis detected within surface-sterilized eggs of Enterobius vermicularis. Experimental Parasitology, 133 (1), 57-61 PMID: 23116599   

Röser D, Simonsen J, Nielsen HV, Stensvold CR, & Mølbak K (2013b). Dientamoeba fragilis in Denmark: epidemiological experience derived from four years of routine real-time PCR. European Journal of Clinical Microbiology & Infectious Diseases : official publication of the European Society of Clinical Microbiology, 32 (10), 1303-10 PMID: 23609513  

Stark DJ, Beebe N, Marriott D, Ellis JT, & Harkness J (2006). Dientamoebiasis: clinical importance and recent advances. Trends in Parasitology, 22 (2), 92-6 PMID: 16380293  

Stark D, Barratt J, Roberts T, Marriott D, Harkness J, & Ellis J (2010). A review of the clinical presentation of dientamoebiasis. The American Journal of Tropical Medicine and Hygiene, 82 (4), 614-9 PMID: 20348509

Stensvold CR, Clark CG, & Röser D (2013). Limited intra-genetic diversity in Dientamoeba fragilis housekeeping genes. Infection, Genetics and Evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 18, 284-6 PMID: 23681023

Stensvold CR, Lewis HC, Hammerum AM, Porsbo LJ, Nielsen SS, Olsen KE, Arendrup MC, Nielsen HV, & Mølbak K (2009). Blastocystis: unravelling potential risk factors and clinical significance of a common but neglected parasite. Epidemiology and infection, 137 (11), 1655-63 PMID: 19393117

Sunday, July 1, 2012

Do I Get Diagnosed Correctly?

I can tell especially from Facebook discussions that people across the globe wanting to know about their "Blastocystis status" are worried that they are receiving false-negative results from their stool tests, and that many Blastocystis infections go unnoticed. And I think I should maybe try and say a few things on this (please also see a recent blog post on diagnosis, - you'll find it here). I might try and simplify things a bit in order not to make the post too long.

Below, you'll find a tentative representation of the life cycle of Blastocystis. It is taken from CDC, from the otherwise quite useful website DPDx - Laboratory Identification of Parasites of Public Health Concern.

Proposed life cycle of Blastocystis.
I don't know how useful it is, but what's important here is the fact that we accidentally ingest cysts of Blastocystis, and we shed cysts that can be passed on to other hosts. The cyst stage is the transmissible stage, and the way the parasite can survive outside the body; we don't know for how long cysts can survive and remain infective. In our intestine and triggered by various stimuli, the cysts excyst, transiting to the non-cyst form, which could be called the trophozoite / "troph" stage, or to use a Blastocystis-specific term, the "vacuolar stage" (many stages have been described for Blastocystis, but I might want to save that for later!). This is possibly the stage in the life cycle where the parasite settles, thrives, multiplies, etc. You can see a picture of vacuolar stages in this blog post. Many protozoa follow this simple life cycle pattern, among them Giardia and most species of Entamoeba. If the stool is diarrhoeic and you are infected by any one or more of these parasites, it may be so that only trophozoites, and, importantly, no cysts, are shed! This has something to do with reduced intestinal transit time and, maybe more importantly, the failure of the colon to resorb water from the stool which means that the trophozoites do not get the usual encystation stimuli. Importantly, trophozoites are in general non-infectious.

There is documentation that once colonised with Blastocystis, you may well carry it with you for years on end, and as already mentioned a couple of times, no single drug or no particular diet appears to be capable of eradicating Blastocystis - this is supported by the notion that Blastocystis prevalence seems to be increasing by age, although spontaneous resolution may not be uncommon, - we don't know much about this. Now, although day-to-day variation in the shedding of Blastocystis has been described, it is my general impression that colonised individuals may shed the parasite with each stool passage, and well-trained lab technicians/parasitologists will be able to pick up Blastocystis in a direct smear (both cysts and trophs may be seen). To do a direct smear you simply just mix a very small portion of the stool with saline or PBS on a slide, put a cover slip over it and do conventional light microscopy at x200 (screening) or x400 (verification). Very light infections may be difficult to detect this way, and if you don't have all the time in the world, a direct smear may not be the first choice.

The "king" of parasitological methods, however, is microscopy of faecal concentrates (Formol Ethyl Acetate Concentration Technique and any variant thereof), which is remarkable in its ability to detect a huge variety of parasites. Especially cysts of protozoa (e.g. Giardia and Entamoeba) and eggs of helminths (e.g. tapeworm, whipworm and roundworm) concentrate well and are identified to genus and species levels based on morphology. The method is not as sensitive as DNA-based methods such as PCR, but as I said, has the advantage of picking up a multitude of parasites and therefore good for screening; PCR methods are targeted towards particular species (types) of parasites. A drawback of the concentration method is that it doesn't allow you to detect trophzoites (i.e. the fragile, non-cystic stage), and, as mentioned, diarrhoeic samples may contain only trophozoites and no cysts...

In many countries it is very common for people to be infected by both protozoa and helminths, and in those countries microscopy of faecal concentrates is a relevant diagnostic choice. In Denmark and many Western European countries, the level of parasitism is higher than might be expected (from a hygiene and food safety point of view) but due to only few parasitic species. Paradoxically, the intestinal parasites that people harbour in this part of the world are parasites that do not concentrate well. They are mainly:

1) Blastocystis
2) Dientamoeba fragilis
3) Pinworm (Enterobius vermicularis)

Only troph stages have been described for Dientamoeba fragilis and it may be transmitted by a vector, such as pinworm (look up paper by Röser et al. in the list below for more information); this mode of transmission is not unprecedented (e.g. Histomonas transmission by Heterakis). Eggs of pinworm may be present in faeces, but a more sensitive method is the tape test.

Now, Blastocystis often disintegrates in the faecal concentration process, and while you might be lucky to pick up the parasite in a faecal concentrate, you shouldn't count on it, and hence the method is not reliable, unless the faecal sample was fixed immediatley after being voided. This is key, and also why fixatives are used for the collection of stool samples in many parts of the world - to enable the detection of fragile stages of parasites. There are many fixatives, e.g. SAF (sodium acetate-acetic formalin), PVA (poly-vinyl alcohol) and even plain formalin will do the trick if it's just a matter of preserving the parasite in the sample. If SAF or PVA is used, this allows you to do permanently stained smears of faecal concentrates, and you will be able to pick up not only cysts of protozoa, but even trophozoites. Trichrome and iron-haematoxylin staining are common methods and are sensitive but very time-consuming and may be related to some health hazards as well due to the use of toxic agents. But this way of detecting parasites is like good craftmanship - it requires a lot of expertise, but then you get to look at fascinating structures with intriguing nuclear and cytoplasmatic diagnostic hallmarks. Truly, morphological diagnosis of parasites is an art form! Notably, samples preserved in such fixatives may be useless for molecular analyses.

Iron-haematoxylin stain of trophozoites of Entamoeba coli
(note the "dirty" cytoplasm characteristic of E. coli).

At our lab we supplement microscopy of faecal concentrates with DNA-based detection of parasites. For some clinically significant parasites, we do a routine screen by PCR, since this is more sensitive than microscopy of faecal concentrates and because this is a semi-automated analysis that involves only DNA extraction, PCR and test result interpretation, which are all things that can be taught easily. Major drawbacks of diagnostic PCR is that you cannot really distinguish between viable (patent infection) and dead organisms (infection resolving, e.g. due to treatment). This is why, in the case of Blastocystis, you may want to do a stool culture as well (at least in post-treatment situations), since only viable cells will be able to grow, obviously.

Two diagnostic real-time PCR analyses have been published, one using CYBR Green and one using a TaqMan probe.

Now, it certainly differs from lab to lab as to which method is used for Blastocystis detection. Some labs apparently apply thresholds for number of parasites detected per visual field, and only score a sample positive if more than 5 parasites per visual field have been detected. I see no support for choosing a threshold, since 1) we do not know whether any Blastocystis-related symptoms are exacerbated by parasite intensity, 2) the number of parasites detected in a faecal concentrate may depend on so many things which have nothing to do with the observer (fluctuations in shedding for instance), and 3) the pathogenic potential of Blastocystis may very well depend on subtype.

If Blastocystis was formally acknolwedged as a pathogen, like Giardia, standardisation of methods would have happened by now. Meanwhile, we can only advocate for the use of PCR and culture if accurate diagnosis of Blastocystis is warranted, while permanent staining of fixed faecal samples constitutes a very good alternative in situations where PCR is not an option.

I have the impression that some labs do DNA-based detection of microbes, including protozoa, and that a result such as "taxonomy unknown" is not uncommon. I don't know how these labs have designed their molecular assays, and therefore I cannot comment on the diagnostic quality and relevance of those tests... it also depends on whether labs do any additional testing as well, such as the more traditional parasitological tests. However, we do know that there is a lot of organisms in our intestine, for which no data are available in GenBank, which is why it is sometimes impossible to assign a name to e.g. non-human eukaryotic DNA amplified from a stool sample.

* More than 1 billion people may harbour Blastocystis.
* Blastocystis is found mainly in the large intestine.
* 95% of humans colonised by Blastocystis have one of the following subtypes: ST1, ST2, ST3, ST4.
* DNA-based detection combined with culture ensures accurate detection of Blastocystis in stool samples and enables subtyping and viability assessment.

Further reading:

Poirier P, Wawrzyniak I, Albert A, El Alaoui H, Delbac F, & Livrelli V (2011). Development and evaluation of a real-time PCR assay for detection and quantification of blastocystis parasites in human stool samples: prospective study of patients with hematological malignancies. Journal of clinical microbiology, 49 (3), 975-83 PMID: 21177897

Röser D, Nejsum P, Carlsgart AJ, Nielsen HV, & Stensvold CR (2013). DNA of Dientamoeba fragilis detected within surface-sterilized eggs of Enterobius vermicularis. Experimental parasitology, 133 (1), 57-61 PMID: 23116599

Scanlan PD, & Marchesi JR (2008). Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. The ISME journal, 2 (12), 1183-93 PMID: 18670396

Stensvold CR, Ahmed UN, Andersen LO, & Nielsen HV (2012). Development and Evaluation of a Genus-Specific, Probe-Based, Internal-Process-Controlled Real-Time PCR Assay for Sensitive and Specific Detection of Blastocystis spp. Journal of clinical microbiology, 50 (6), 1847-51 PMID: 22422846

Stensvold CR, Arendrup MC, Jespersgaard C, Mølbak K, & Nielsen HV (2007). Detecting Blastocystis using parasitologic and DNA-based methods: a comparative study. Diagnostic microbiology and infectious disease, 59 (3), 303-7 PMID: 17913433

Stensvold CR, & Nielsen HV (2012). Comparison of microscopy and PCR for detection of intestinal parasites in Danish patients supports an incentive for molecular screening platforms. Journal of clinical microbiology, 50 (2), 540-1 PMID: 22090410

Sunday, May 20, 2012

Brave New World

Using Blastocystis as an example, we have only recently realised the fact that conventional diagnostic methods in many cases fail to detect Blastocystis in faecal samples, which is why we have started using molecular diagnostics for Blastocystis. I was also surprised to realise that apparently no single drug can be used to treat Blastocystis, and that in fact we do not know which combo of drugs will actually consistently eradicate Blastocystis (Stensvold et al., 2010).

There will come a time - and it will be soon - where it will be common to use data from genome sequencing of pathogenic micro-organisms to identify unique signatures suitable for molecular diagnostic assays and to predict suitable targets (proteins) for chemotherapeutic intervention; in fact this is already happening (Hung et al., in press). However, despite already harvesting the fruits of recent technological advances, we will have to bear in mind that the genetic diversity seen within groups of micro-organisms infecting humans may be quite extensive. This of course will hugely impact our ablility to detect these organisms by nucleic acid-based techniques. For many of the micro-eukaryotic organisms which are common parasites of our guts, we still have only very little data available. For Blastocystis, data is building up in GenBank and at the Blastocystis Sequence Typing Databases, but for other parasites such as e.g. some Entamoeba species, Endolimax and Iodamoeba, we have very little data available. We only recently managed to sequence the small subunit ribosomal RNA gene of Iodamoeba, and we demonstrated tremendous genetic variation within the genus; it is now clear that Iodamoeba in humans comprises a species complex rather than "just" Iodamoeba bütschlii (Stensvold et al, 2012).

Cysts of Iodamoeba
Ribosomal RNA is present in all living cells and is the RNA component of the ribosome. We often use this gene for infering phylogenetic relationships, i.e. explaining how closely or distantly related one organism is to another. This again assists us in hypothesising on transmission patterns, pathogenicity, evolution, drug susceptibility and other things. Since ribosomal RNA gene data are available for most known parasites, we often base our molecular diagnostics on such data. However, the specificity and sensitivity of our molecular diagnostic assays such as real-time PCRs are of course always limited by the data available at a given point in time (Stensvold et al., 2011). Therefore substantial sampling from many parts of the world is warranted in order to increase the amount of data available for analysis. In terms of intestinal micro-eukaryotes, we have only seen the beginning. It's great to know data are currently builiding up for Blastocystis from many parts of the world, - recently also from South America (Malheiros et al., 2012) - but the genetic diversity and host specificity of many micro-eukaryotes are still to be explored. It may be somewhat tricky to obtain information, since conventional PCR and sequencing offer significant challenges in terms of obtaining sequence data; such challenges can potentially be solved by metagnomic approaches - today's high throughput take on cloning; however, although the current next generation sequencing technology hype makes us feel that we are almost there, it seems we still have a long way to go - extensive sampling is key!

Cited literature:

Hung, G., Nagamine, K., Li, B., & Lo, S. (2012). Identification of DNA Signatures Suitable for Developing into Real-Time PCR assays by Whole Genome Sequence Approaches: Using Streptococcus pyogenes as a pilot study Journal of Clinical Microbiology DOI: 10.1128/JCM.01155-12

Malheiros AF, Stensvold CR, Clark CG, Braga GB, & Shaw JJ (2011). Short report: Molecular characterization of Blastocystis obtained from members of the indigenous Tapirapé ethnic group from the Brazilian Amazon region, Brazil. The American journal of tropical medicine and hygiene, 85 (6), 1050-3 PMID: 22144442

Stensvold, C., Lebbad, M., & Clark, C. (2011). Last of the Human Protists: The Phylogeny and Genetic Diversity of Iodamoeba Molecular Biology and Evolution, 29 (1), 39-42 DOI: 10.1093/molbev/msr238  

Stensvold, C., Lebbad, M., & Verweij, J. (2011). The impact of genetic diversity in protozoa on molecular diagnostics Trends in Parasitology, 27 (2), 53-58 DOI: 10.1016/

Stensvold, C., Smith, H., Nagel, R., Olsen, K., & Traub, R. (2010). Eradication of Blastocystis Carriage With Antimicrobials: Reality or Delusion? Journal of Clinical Gastroenterology, 44 (2), 85-90 DOI: 10.1097/MCG.0b013e3181bb86ba

Sunday, April 8, 2012

A Few Words On Blastocystis Morphology and Diagnosis

Blastocystis is a sinlge-celled parasite. The parasite produces cysts (probably the transmissible form) and vegetative stages (including the stage commonly referred to as the vacuolar stage). Vegetative stages are commonly seen in fresh faecal samples and in culture. This is what they look like under light microscopy:

Vegetative stages of Blastocystis (unstained) (source:

Using permanent staining of fixed faecal material, the eccentrically located nuclei become more apparent:

Vegegtative stages of Blastocystis (Trichrome stain) (source:

Although sensitive, permanent staining techniques (e.g. Trichrome, Giemsa and Iron Haematoxylin) are relatively time-consuming, impractical and expensive. Since also conventional concentration of unfixed stool using e.g. the Formol Ethyl-Acetate Concentration Technique is not appropriate for diagnosis (Blastocystis cysts are very difficult to pick up, and vacuolar stages become distorted or disintegrate), we recommend short-term in-vitro culture (using Jones' or Robinson's medium) and/or Real-Time-PCR on genomic DNAs extracted directly from faeces using QIAGEN Stool Mini Kit (QIAGEN, Hilden, Germany) or - in modern laboratories - by automated DNA extraction robots. Once genomic DNAs have been extracted and screened by PCR, positive samples can be submitted to subtyping using the barcoding method, and DNAs can be screened for other parasites by PCR as well. In fact the use of insensitive methods to distinguish carriers from non-carriers is one of our greatest obstacles to obtaining valid prevalence data on Blastocystis.

Having an isolate in culture adds the benefit of having a continuous source of DNA for further genetic characterisation (for instance complete SSU-rDNA sequencing) in case a particular isolate turns out to be genetically different from those already present in GenBank or the isolate database at Blastocystis Sequence Typing Home Page. And chances are that there are quite a few "novel" subtypes out there... especially in animals. However, Blastocystis from animals may not always be successfully established in culture.