Showing posts with label NGS. Show all posts
Showing posts with label NGS. Show all posts

Monday, April 29, 2019

OPPORTUNITY!

For those interested in and working with
1) new technological and bioinformatic approaches to detecting and differentiating intestinal parasites
2) the role of Blastocystis and other common luminal intestinal parasitic protists
 there are currently a few interesting calls:

Mark van der Giezen (with whom I've had the pleasure of working with on a couple of projects) recently tweeted:

For more information, please go here.

He also tweeted:


Moving on to special issues in journals, I would like to highlight that Parasite Epidemiology and Control (PEC) is planning to publish two special issues of particular interest to our community:


Special Issue: 2nd International Blastocystis Conference

As the readers of this blog will know, the 2nd International Blastocystis Conference took place in Bogotá, Colombia only half a year ago. A special issue in PEC will be dedicated to this conference. It welcomes papers on Blastocystis also from those of our colleagues who could not attend the conference. You can read more here.

Guest editors: Juan David Ramirez Gonzalez (Editor of PEC), Funda Dogruman-Al and myself.


Special Issue: Novel Technologies and Approaches for Detecting Intestinal Parasites

Together with Juan David Ramirez Gonzalez I look very much forward to editing a special issue on new technologies and approaches to detecting intestinal parasites. I'm thinking metagenomics, amplicon-based sequencing, etc. Of course, also papers describing non-DNA-based methods are welcome. You can read more here.


Special Issue: Recent Advances in the Controverisal Human Pathogens Pneumocystis, Microsporidia, and Blastocystis

Finally, I'd like to highlight a special issue call from Frontiers in Microbiology on Pneumocystis, microsporidia, and Blastocystis - the odd ones out. Please go here for more information. The special issue is edited by Olga Matos, Lihua Xiao, and myself.

Tuesday, September 1, 2015

This Month in Blastocystis Research (AUG 2015)

I would like to highlight a comment that we published in PLoS Pathogens, - a paper that is free for download here. It gained some attention on Twitter, and it was recently reviewed in the Faculty of 1000.

We basically highlight the tricky situation that we so often encounter in the field of clinical microbiology, namely the one in which all non-fungal organisms isolated from the human intestinal tract are being referred to collectively as 'parasites'. The word 'parasite' has a negative connotation, indicating that the organism exploits the host with detrimental effects on the host. While this is true for some ciliates, for instance Giardia, other ciliates may in fact be mutualists, which means that these organisms have adapted to a life within a host, providing the host with one or more advantages. One such example is seen in herbivores, where ciliates and flagallates break down cellulose.

In the clinical microbiology lab we face different types of organisms when dealing with stool samples: Giardia, Cryptosporidium and Entamoeba histolytica are considered true parasites, i.e. organisms benefitting from the environment of a host, at the expense of the host, and symptoms such as diarrhoea may develop, indicating host damage. Parasites such as Cryptospordium are usually infecting an individual for a short while, with immunity developing. Meanwhile, we also encounter eukaryotic organisms that are known to be able to colonise the intestine for a very long time, - decades, without being expelled by the host; Blastocystis belong to this group. For some reason it is as if the body 'tolerates' the presence of the organism. Maybe Blastocystis is good at evading local immune responses, or maybe the body wishes to 'keep' Blastocystis for some reason and so  developed a way to tolerate it... as I've hinted at before on this blog, maybe Blastocystis may assist us in one or more metabolic processes, for instance, either directly or indirectly, maybe by selecting for or influencing bacterial communities. Indeed, we recently found evidence of Blastocystis being specifically related to certain groups of bacteria, which, if confirmed, opens up for a whole new line of research, including the use of Blastocystis as a probiotic.

I know that this last sentence may sound harsh in some people's ears; nevertheless, most research involving Blastocystis so far has been quite static and unimaginative, and it's about time that food microbiologist and the like start taking an interest in the micro-eukaryotes that tend to be common and stable conolisers of our guts.

If YOU take an interest in this topic, I suggest you look up the articles cited below.

References and further reading:

Andersen LO, Bonde I, Nielsen HB, & Stensvold CR (2015). A retrospective metagenomics approach to studying Blastocystis. FEMS Microbiology Ecology, 91 (7) PMID: 26130823

Lukeš J, Stensvold CR, Jirků-Pomajbíková K, & Wegener Parfrey L (2015). Are Human Intestinal Eukaryotes Beneficial or Commensals? PLoS Pathogens, 11 (8) PMID: 26270819

Parfrey LW, Walters WA, & Knight R (2011). Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Frontiers in Microbiology, 2 PMID: 21808637

Scanlan PD, Stensvold CR, Rajilić-Stojanović M, Heilig HG, De Vos WM, O'Toole PW, & Cotter PD (2014). The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiology Ecology, 90 (1), 326-30 PMID: 25077936