Showing posts with label archaea. Show all posts
Showing posts with label archaea. Show all posts

Thursday, March 14, 2013

Extremophilic Eukaryotes

My recent post Blastocystis aux Enfers was my "literary take" on biological adaptation of intestinal parasitic protists, using Blastocystis as an example. As a parasitologist you'd come across many peculiar and shrewd biological adaptations and life cycles, and I hope to be able to give some examples in a future post. Actually, there is a parasite which is quite common in humans, maybe even just as common as Blastocystis, which is also single-celled, but which may have a much more complicated life cycle than Blastocystis, namely Dientamoeba fragilis; a colleague of mine is currently doing his PhD on Dientamoeba and he has collected multiple sources of evidence to confirm the hypothesis that this parasite is transmitted by a vector, namely pinworm, probably along the same way that Histomonas meleagridis – the cause of blackhead disease in especially turkeys – is transmitted by heterakids (which again are transmitted by parathenic hosts such as earthworms, which get eaten by turkeys, chickens, etc.). Anyway, I’ll probably get back to Dientamoeba, once his data are out.

Meanwhile, Blastocystis comes out of a very heterogeneous group of organisms called Stramenopiles, many of which are algae. Algae are photosynthetic organisms found in habitats as diverse as glacial ice and hot springs.One of these algae is named Galdieria sulphuraria, which is a remarkable unicellular eukaryote inhabiting hostile environments such as volcanic hot sulfur springs where it is responsible for about 90% of the biomass; indeed this certainly qualifies as "Galdieria aux enfers"!

Tuesday, December 18, 2012

Blastocystis Highlights 2012

2012 is coming to an end and it is also time for taking stock of the year Blastocystis-wise. We saw many significant scientific papers, among them a paper by Poirier and colleagues, predicting a potential role for Blastocystis in irritable bowel syndrome (IBS), based on analysis of their recent genome data.They propose that Blastocystis is genetically armed with the equipment necessary to cause intestinal dysbiosis, and potentially IBS, which may be a cause of dysbiosis. Indeed, members of this group found that the Blastocystis genome encodes various proteases and hydrolases that, if secreted, may be involved with perturbations of the gut flora; however, we need transcriptional profiling or similar studies to find out, whether these enzymes are actually expressed. Some species of Entamoeba are also in possession of multiple "virulence genes", but for some species they apparently remain un-expressed, and most Entamoeba species are still considered harmless.