Showing posts with label Blastocystis. Show all posts
Showing posts with label Blastocystis. Show all posts

Saturday, April 29, 2017

It's official - The 2nd International Blastocystis Conference!

It's been a while, but I hope the wait has been worth the while!

On behalf of the organisers, who currently include Juan-David Ramírez, Funda Dogruman-Al, and myself, we would now like to announce the dates, venue, and speakers for the 2nd International Blastocystis Conference! Feel free to be mesmerised!

Juan-David Ramírez just sent me the 'teaser' below - and this blog is an obvious place to share it.
We are very happy that so many "heavy Blastocystis researchers" have accepted our invitation to participate! However, we already now know that we will be missing some very important ones. Well, you can't have it all, and we're absolutely sure that the event will be a BLAST(ocystis)!

There will be a two-day workshop (9th–10th of October) followed by a two-day conference (11th–12th of October). On the Friday, the 13th of October, it will be possible to participate in a one-day sightseeing event in Bogotá.

So, if you haven't done it already, make sure that you sign up for notifications from the Blastocystis Parasite Blog (here or on Facebook) in order to keep up with the latest information on abstract submission deadlines, programme, practicalities, travel grants, etc.

We are also on the lookout for sponsors, so if you have any suggestions, please contact me.

We are looking very much forward to seeing you in Bogotá in 2018!

Wednesday, March 1, 2017

Blastocystis PhD thesis from Iraq

My colleague, Dr Haitham Sedeeq Albakri (Assistant Professor at Department of Microbiology, College of Veterinary Medicine, University of Mosul), recently defended his PhD thesis  on 'Isolation and Genotyping of Blastocystis hominis in Human and Different Animals in Erbil Province'. His work was supervised by Prof Dr Abdul Aaziz Jameel Al-Ani.

Haitham wrote me and asked if I could publish the summary on my website, so here goes:

Blastocystis is an enteric unicellular anaerobic protozoan that presents in the digestive system of the humans and different animal hosts including cattle, sheep, goats, pigs, dogs, cats and birds as well as wild animals. Blastocystis causes digestive system disorders especially the irritable bowel syndrome, while animals are considered as reservoir and infective hosts. In Iraq, few morphological studies related to Blastocystis have been done in human only, but not animals. Therefore, the study aimed to detect the presence of Blastocystis in human and animal hosts, in addition to study the morphological and genetic characteristics of this protozoan. In this present study, a total of 292 stool samples have been examined for the presence of Blastocystis, the samples were distributed as follows: humans 62, cattle 81, sheep 78, dogs 21 and cats 50. Wet mount preparation, trichrome staining and culture methods were used to study the morphological characteristics of Blastocystis. In addition, molecular characteristics have been studied by polymerase chain reaction (PCR) using universal primers to detect the presence of the Blastocystis, and subsequently subtyping of positive samples using 10 pairs of subtype-specific primers. Blastocystis also have been characterized by restriction fragment length polymorphism (RFLP) method using HinfI. Finally, DNA barcoding method has been used as a more accurate and recommended method for subtyping. The results showed that Blastocystis has been detected using wet mount preparation method in 71 (24.3%) out of 292 samples collected from all hosts including human, cattle, sheep dogs and cats. While 17/62 (27.4%), 19/81 (23.5%), 14/78 (17.9%), 3/21 (14.3%) and 18/50 (36.0%) samples were positive in human, cattle, sheep dogs and cats, respectively. The detection percentages were higher when culture method was used and 98 (33.6%) were positive out of 292 tested samples. While 28/62 (45.2%), 31/81 (38.3%), 25/78 (32.1%), 2/21 (9.5%) and 12/50 (24.0%) samples were positive in human, cattle, sheep dogs and cats, respectively. The molecular methods revealed that all cultured samples were positive using universal primers with product size 1780 bp. While positive samples subtyped using specific primers into ST3a and ST3b in humans, ST5 and ST6 in cattle and ST6 in sheep, ST1a in dogs and ST5 in cats. The RFLP technique classified the Blastocystis into seven genotypes; type I, II and III in humans, type IV, V and VI in cattle and only one type, VII, in sheep. Whereas, DNA barcoding method showed that ST2 and ST3 present in humans, ST14 in cattle and ST5 in sheep, these subtypes represent 9 isolates of Blastocystis sp. that have been successfully submitted to the GenBank of the NCBI, including 4 isolates in human, 2 isolates in cattle and 3 isolates in sheep. In conclusion, this is the first morphological and genetic study of Blastocysts in humans and animal hosts in Iraq. It is also the first time that culture method has been used in Iraq for diagnosis of this protozoan. Additionally, it is the first time that molecular characterization of different local subtypes has been confirmed in Iraq. Further studies are needed to include morphological and genetic characteristics in other animal hosts and to study the relationship between human and animal isolates in different geographical areas in Iraq, in addition to investigate the relation between Blastocystis with irritable bowel syndrome in humans.

I believe that this is the first study to include Blastocystis subtype data from Iraq. I also believe that the thesis was written mostly in Arabic. Dr Albakri's email address is haitham_albakri[at]

Friday, December 30, 2016

This Month in Blastocystis Research (DEC 2016)

I would like to end the year by briefly highlight three of the most important/interesting papers in Blastocystis research published in 2016 (and not co-authored by me).

The first article that comes to my mind is one by Pauline Scanlan and colleagues, who took to investigating the prevalence of Blastocystis in US households (family units). The reason why I'm mentioning this article is not so much due to its approach; it's much more related to the fact that even when molecular methods are used (i.e., highly sensitive methods), the prevalence in this population was only 7%, and the vast majority of Blastocystis carriers were adults. The prevalence is much lower in this population (Colorado) than in a country such as Denmark. I'm interested in knowing the reason for this difference. Are people in Colorado less exposed or are they less susceptible than people in Denmark? I'm also interested in knowing why there was only one child among the carriers... we see similar trends elsewhere: Blastocystis is a parasite that emerges only in adolescence and adulthood. Meanwhile, we see a lot of Dientamoeba in toddlers and smaller children, with more or less all children being infected at some point - at least in Denmark; here, geographical differences may exist as well. Mixed infection with Blastocystis and Dientamoeba in adults is not uncommon, so it's not that they outcompete each other.

Next up, is the article by Audebert and colleagues who published in the Nature-affiliated Scientific Reports on gut microbiota profiling of Blastocystis-positive and -negative individuals. I already made a small summary of the article in this post.

While we gain valuable insight into gut microbiota structure, we also need to know what these microbes are able to do. We need to know about the interaction with the host and how they influence our metabolism. I hope to see more studies emerging on the metabolic repertoire of Blastocystis and how the parasite may be capable of influencing the diversity and abundance of bacterial, fungal and protist species in the gut. What would also be useful is a drug that selectively targets Blastocystis so that we can be able to selectively eradicate the parasite from its niche in order to see what happens to the surrounding microbiota and - if in vivo - to the host.

The last article is authored by my Turkish colleagues Özgür Kurt, Funda Dogruman-Al, and Mehmet Tanyüksel, who pose the rhetorical question: "Blastocystis eradication - really necessary for all?" in the special issue on Blastocystis in Parasitology International. For some time I have been thinking of developing a reply to the authors as a Letter to the Editor with the title "Blastocystis eradication - really necessary at all?" Nevermind, quite similar to what we did back in 2010, the authors review the effect of various drugs that have been used to try eradicate Blastocystis. Moreover, they acknowledge the fact that Blastocystis is often seen in healthy individuals, and that its role in the development of gut microbiota and host immune responses should be subject to further scrutiny. They even suggest that the role of Blastocystis as a probiotic should be investigated. It's great to see clinicians think along these lines, since this is an important step towards expanding the revolution lately seen in Blastocystis research, exemplified by studies such as that by Audebert et al. mentioned above.

So, wishing you all a Happy New Year and a great 2017, I'd like to finish by encouraging you to stay tuned; soon, I will be posting some very... interesting... neeeeeeewwwws...


Audebert C, Even G, Cian A, Blastocystis Investigation Group., Loywick A, Merlin S, Viscogliosi E, & Chabé M (2016). Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Scientific Reports, 6 PMID: 27147260 

Kurt Ö, Doğruman Al F, & Tanyüksel M (2016). Eradication of Blastocystis in humans: Really necessary for all? Parasitology International, 65 (6 Pt B), 797-801 PMID: 26780545

Scanlan PD, Knight R, Song SJ, Ackermann G, & Cotter PD (2016). Prevalence and genetic diversity of Blastocystis in family units living in the United States. Infection, Genetics and Evolution, 45, 95-97 PMID: 27545648

Thursday, November 10, 2016

This Month in Blatstocystis Research (OCT 2016)

A few things to highlight:

I'm very pleased to announce the Special Issue on Blastocystis recently appearing in Parasitology International - go here for the list of contents. The papers included in this issue represent the breadth of the contributions made to the 1st International Blastocystis Symposium, which took place last year in Ankara. A couple of review and opinion articles written by members of the Scientific Committee are accompanied by several articles outlining original research findings that were presented at the symposium. This special issue is particularly useful for younger researchers who wish to familiarise themselves with some of the methods that are currently in use in surveys of Blastocystis.
Readers should not expect to find articles on Blastocystis in a microbiota context; nor should they expect to see data from seminal studies that challenge the view that Blastocystis is a possible pathogen. Nevertheless, there is an interesting opinion paper with the title "Eradication of Blastocystis in humans--really necessary for all?"

Led by Dr Alison Jacob and Dr Graham Clark, London School of Hygiene and Tropical Medicine, our group just published an article on a comparative study of Blastocystis mitochondrial genomes. In general, mitochondrial genomes differ vastly in length, structure, and gene content across organisms, and by studying these genomes it has been possible to develop hypotheses on how these organisms have evolved including the adaptive/non-adaptive processes involved in shaping organismal and genomic complexity. Unlike most anaerobic eukaryotes, Blastocystis does not have true mitochondria but has mitochondrion-related organelles (MROs; also referred to as mitochondrion-like organelles [MLO]) that contain a genome. In the study in question, we sequenced and compared mitochondrial genomes from subtypes 1, 2, 3, 4, 6, 7, 8, and 9. All of them have the same genes in the same order, but two curiosities were noted. One gene, called orf160, as stop codons near the beginning of the coding region in most subtypes. A second gene, coding for ribosomal protein S4, lacks a start codon in some subtypes.
In both cases, these characteristics would normally prevent a gene from being expressed, but because these genes are otherwise conserved and most of the gene is 'intact', it seems likely that the genes are functional. Ribosomal protein S4 is considered an essential component of the ribosome needed for protein synthesis in the organelle. How the genes are expressed to produce functional proteins remains a mystery, - just one more peculiarity of Blastocystis!

In the growing pool of articles exploring relationships between intestinal parasites and gut microbiota, I was pleased to discover an article by Iebba et al. (2016) on "Gut microbiota related to Giardia duodeanlis, Entamoeba spp. and Blastocystis hominis infections in humans from Côte d'Ivoire". In this observational study, the authors used qPCR to detect groups of bacteria that are indicative of dysbiosis vs eubiosis, dysbiosis being a perturbed, imbalanced microbiota and eubiosis being a healthy, balanced gut microbiota. The authors found that individuals with Blastocystis and Entamoeba were characterised by eubiosis, while individuals with Giardia were characterised by dysbiosis. It says that samples (n = 20) were randomly chosen, but even so, the number of samples tested was low, and care should be taken when interpreting the results. The overall approach, however, is interesting, and somewhat resembles the work that we have been doing in our lab (ref). I also recently blogged about another study with a similar aim (go here to view the post).

I would also like to bring your attention to the EMBO Conference "Anaerobic protists: Integrating parasitology with mucosal microbiota and immunology", which will take place in Newcastle upon Tyne, UK in Aug/Sep 2017 (image). I will be there doing my best to deliver a stimulating talk on current knowledge and advances in Blastocystis and Dientamoeba research. You can visit the conference website by folloing this link


Dogruman-Al F, Stensvold CR, & Yoshikawa H (2016). Editorial - PAR INT - special issue on Blastocystis. Parasitology international, 65 (6 Pt B) PMID: 27742000

Iebba V, Santangelo F, Totino V, Pantanella F, Monsia A, Di Cristanziano V, Di Cave D, Schippa S, Berrilli F, & D'Alfonso R (2016). Gut microbiota related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis infections in humans from Côte d'Ivoire. Journal of infection in developing countries, 10 (9), 1035-1041 PMID: 27694739

Jacob AS, Andersen LO, Pavinski Bitar P, Richards VP, Shah S, Stanhope MJ, Stensvold CR, & Clark CG (2016). Blastocystis mitochondrial genomes appear to show multiple independent gains and losses of start and stop codons. Genome biology and evolution PMID: 27811175

Smith DR (2016). The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Briefings in functional genomics, 15 (1), 47-54 PMID: 26117139