Showing posts with label symptomatic. Show all posts
Showing posts with label symptomatic. Show all posts

Monday, January 14, 2013

A Penny For Your Thoughts

So, what should we do about Blastocystis? What do we want to know?

I believe the imminent answer to the latter question is easy: We want to know whether it’s pathogenic, whether we should treat it and how. But I also think that there are many other interesting aspects of Blastocystis which are also of broad interest to the general public, namely: How about the many cases of asymptomatic Blastocystis carriage? What does Blastocystis do in our guts? Could it have any potentially beneficial impact on our health?

Given the fact that Blastocystis has not been implicated in any outbreaks (admittedly: I guess that no one actually ever looked for Blastocystis in outbreak investigations... except for me!), I reckon that the chance of it being involved in acute diarrhoea is small. So, in that respect it's very different from the other intestinal protists such as Giardia, Cryptosporidium, Cyclospora, microsporidia, even Entamoeba histolytica. It's actually more reminiscent of helminth infections, which are are often chronic, and when light hardly give rise to symptoms (depending on species that is!).So I'm more thinking along the lines of co-evolution, adaptation, etc.

Maybe future research will call for a shift in paradigm, but until then I think that we should do what we already can, just at a larger scale and see where it takes us, namely:

Sunday, June 17, 2012

The Circular Problem of Blastocystis

After submitting stool samples for microbiological analyses, many people with intestinal symptoms are informed by their GPs that they have Blastocystis, and that the clinical significance of this parasite is unknown (which is not entirely wrong). However, some GPs may want to try to eradicate Blastocystis in the absence of other potential causes of the symptoms, prescribing drugs such as Protostat/Flagyl (Metronidazole). During and after treatment, many patients will experience temporary alleviation only "to get back to where they started" after a couple of weeks or so. And often, they will also remain positive for Blastocystis (sometimes Blastocystis may be very difficult to detect during the course of treatment and immediately after treatment, which may be due to a transitory decrease in parasite load for direct and indirect reasons; see below). Anyway, this is the classical scenario.

The problem with Blastocystis is a circular one: There is currently no single 100% successful treatment, and when people with symptoms + Blastocystis cannot get rid of their parasites and thereby get the chance to report on symptom status after permanently cleared infection (+/-clinical improvement), it is - to put it mild - extremely challenging to collect information and data that can assist us in drawing conclusions. It doesn't make it any better that we know that a lot of people have Blastocystis without knowing and without having symptoms.We therefore shouldn't blame health care professionals for being in the dark.

People who do not know a lot about Blastocystis (and who does?) might take to the Internet to get more information, including how to deal with the infection. Not all the advice given on the Internet may be useful and little of it will be based on scientific evidence. Some people may be desperate to try and clear any parasite that they have been diagnosed with, without realising that some parasites might actually be a sign of a healthy gut ecological system and be of potential benefit in terms of maintaining a healthy immune system; we don't know much about this yet. Or maybe the use of antibiotics will damage the general intestinal flora and cause more or more severe symptoms than would the persistence of the parasitic infection! We don't know, but as hinted at in previous posts, our new technologies will assist us in obtaining the information that we have been looking for so long.

So, how do we move on from here? There is no doubt that scientific studies are key. Pilot data are available showing that at least one of the genetic variants (subtypes) of Blastocystis is more common in patients with symptoms than in the background population, but this still needs confirmation.

The genetic diversity of Blastocystis found in humans is huge. If the genetic diversity of Blastocystis was visible, different subtypes of Blastocystis would probably be as different as these marble balls!

We need substantial funding for carrying out large-scale studies aiming to confirm these data. Once epidemiological association has been sufficiently demonstrated, the next step is to find out whether those strains/subtypes associated with disease are characterised by having effector proteins not seen or - maybe more convincingly - not expressed in strains/subtypes seen in healthy individuals. If we have proof of both epidemiological association and expression of virulence genes, then next step could  include a randomised control treatment (RCT) study in order to identify the drug(s) that lead to microbiological and/or clinical improvement, i.e. parasite eradication and alleviation of symptoms, respectively.

It may be so that different subtypes of Blastocystis respond to different antibiotics. And if successful treatment is dependent on other factors as well such as complex microbial interspecies interactions, it may be perplexing to realise, that different individuals may respond differently to any given treatment. As Pepper and Rosenfield suggest in their paper about microbiome multistability: A key consequence of multistability is that different instances of the same type of system, such as different individual gut microbiomes, may show very different responses to the same perturbation.

And so, how does this relate to Blastocystis treatment? Well, since none of the treatments used for treating Blastocystis are specific for this parasite (metronidazole for instance is a broad-spectrum antibiotic used to eradicate a range of anaerobic bacteria, including Clostridium), there will probably be a mixture of direct and indirect effects on Blastocystis upon treatment. The direct effect on Blastocystis will depend on its susceptibility to the antibiotic, while the indirect effect will depend on the bacterial flora and how it responds during treatment. Hence, drugs may directly affect Blastocystis and/or perturb the intestinal flora to an extent which makes it an unsuitable habitat for Blastocystis. We hope soon to be able to investigate the interaction between Blastocystis and gut bacteria by metagenomic approaches. It should be kept in mind though that metronidazole is absorbed from the proximal part of the intestine, while Blastocystis is a parasite of the colon; hence, it may very well be so that metronidazole does not reach Blastocystis in its niche. When treating intestinal amoebiasis, metronidazole is given together with a luminal drug to ensure targeting both invasive and the luminal Entamoeba histolytica.

So, while we should keep pursuing the role of Blastocystis in disease, we should also try to explore whether there are some good sides to Blastocystis colonisation and whether we can learn to see the parasite as a proxy for something (clinical condition, enterotype, etc.). I have expanded a bit on this in my recent paper "Thinking Blastocystis Out Of The Box", available in the journal Trends in Parasitology. To this end, learning about the bacterial communities that may influence Blastocystis growth and establishment may improve our ability to understand Blastocystis in an ecological context.

For those who are interested in this, may I suggest some further reading (including papers on (unpredictable) antibiotics-associated changes in gut flora and individualised responses to perturbations in the gut microbiome and a couple of studies on Blastocystis subtypes where links to disease phenotypes have been identified):

Pepper, J., & Rosenfeld, S. (2012). The emerging medical ecology of the human gut microbiome Trends in Ecology & Evolution, 27 (7), 381-384 DOI: 10.1016/j.tree.2012.03.002

Dethlefsen, L., & Relman, D. (2010). Colloquium Paper: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation Proceedings of the National Academy of Sciences, 108 (Supplement_1), 4554-4561 DOI: 10.1073/pnas.1000087107

Stensvold, C., Christiansen, D., Olsen, K., & Nielsen, H. (2011). Blastocystis sp. Subtype 4 is Common in Danish Blastocystis-Positive Patients Presenting with Acute Diarrhea American Journal of Tropical Medicine and Hygiene, 84 (6), 883-885 DOI: 10.4269/ajtmh.2011.11-0005

Domínguez-Márquez, M., Guna, R., Muñoz, C., Gómez-Muñoz, M., & Borrás, R. (2009). High prevalence of subtype 4 among isolates of Blastocystis hominis from symptomatic patients of a health district of Valencia (Spain) Parasitology Research, 105 (4), 949-955 DOI: 10.1007/s00436-009-1485-y

Stensvold, C., (2012). Thinking Blastocystis Out Of The Box Trends in Parasitology DOI: 10.1016/j.pt.2012.05.004

Saturday, March 31, 2012

Blastocystis Treatment

In my opinion, in many cases we should "leave Blastocystis alone". In some cases, however, treatment may be warranted. However, currently there are no convincing drug regimens. RCTs needed.
For more information, please consult this review. 

Some updates on Blastocystis

Blastocystis is a micro-eukaryote, a so-called protist, parasitising the intestine of humans and a variety of animals.

We estimate that at least 1 billion people worldwide are colonised by this parasite, and we believe that the majority experience no more episodes of intestinal upset, e.g. diarrhoea, than the average individual.

Blastocystis colonises the intestine for a long time (probably months or years).

Many species of Blastocystis are known, of which at least 9 have been found in humans. Such species are currently termed "subtypes" (STs). ST1, ST2, ST3 and ST4 are common in Europe. While ST1, ST2, and ST3 appear to have equal prevalences in patients with diarrhoea and healthy individuals, ST4 appears to be linked to diarrhoea and/or chronic conditions such as irritable bowel syndrome (IBS).

There is no known efficient treatment of Blastocystis. Although metronidazole is often prescribed for Blastocystis infections, there is conflicting reports on its efficacy. Even in combination with a luminal agent, such as paromomycin, Blastocystis eradication cannot be guaranteed.

Whether Blastocystis causes symptoms in humans may depend on factors such as co-evolution. ST3 is the most common subtype in humans and ST3 may account for 30-50% of Blastocystis in humans. ST3 shows substantial intra-subtype genetic variation, and we believe that Blastocystis ST3 has co-evolved with humans, and therefore we may have adapted to ST3 colonisation. ST4 on the other hand is almost clonal and may have entered the human population relatively recently. This could partly explain why ST4 colonisation has been linked to intestinal symptoms.

Further reading:
1. Stensvold CR, Alfellani M, Clark CG. Levels of genetic diversity vary dramatically between Blastocystis subtypes.
2. Stensvold CR, Christiansen DB, Olsen KE, Nielsen HV. Blastocystis sp. ST4 is common in Danish Blastocystis-positive patients presenting with acute diarrhea.