Showing posts with label microbiota. Show all posts
Showing posts with label microbiota. Show all posts

Friday, December 30, 2016

This Month in Blastocystis Research (DEC 2016)

I would like to end the year by briefly highlight three of the most important/interesting papers in Blastocystis research published in 2016 (and not co-authored by me).

The first article that comes to my mind is one by Pauline Scanlan and colleagues, who took to investigating the prevalence of Blastocystis in US households (family units). The reason why I'm mentioning this article is not so much due to its approach; it's much more related to the fact that even when molecular methods are used (i.e., highly sensitive methods), the prevalence in this population was only 7%, and the vast majority of Blastocystis carriers were adults. The prevalence is much lower in this population (Colorado) than in a country such as Denmark. I'm interested in knowing the reason for this difference. Are people in Colorado less exposed or are they less susceptible than people in Denmark? I'm also interested in knowing why there was only one child among the carriers... we see similar trends elsewhere: Blastocystis is a parasite that emerges only in adolescence and adulthood. Meanwhile, we see a lot of Dientamoeba in toddlers and smaller children, with more or less all children being infected at some point - at least in Denmark; here, geographical differences may exist as well. Mixed infection with Blastocystis and Dientamoeba in adults is not uncommon, so it's not that they outcompete each other.

Next up, is the article by Audebert and colleagues who published in the Nature-affiliated Scientific Reports on gut microbiota profiling of Blastocystis-positive and -negative individuals. I already made a small summary of the article in this post.

While we gain valuable insight into gut microbiota structure, we also need to know what these microbes are able to do. We need to know about the interaction with the host and how they influence our metabolism. I hope to see more studies emerging on the metabolic repertoire of Blastocystis and how the parasite may be capable of influencing the diversity and abundance of bacterial, fungal and protist species in the gut. What would also be useful is a drug that selectively targets Blastocystis so that we can be able to selectively eradicate the parasite from its niche in order to see what happens to the surrounding microbiota and - if in vivo - to the host.

The last article is authored by my Turkish colleagues Özgür Kurt, Funda Dogruman-Al, and Mehmet Tanyüksel, who pose the rhetorical question: "Blastocystis eradication - really necessary for all?" in the special issue on Blastocystis in Parasitology International. For some time I have been thinking of developing a reply to the authors as a Letter to the Editor with the title "Blastocystis eradication - really necessary at all?" Nevermind, quite similar to what we did back in 2010, the authors review the effect of various drugs that have been used to try eradicate Blastocystis. Moreover, they acknowledge the fact that Blastocystis is often seen in healthy individuals, and that its role in the development of gut microbiota and host immune responses should be subject to further scrutiny. They even suggest that the role of Blastocystis as a probiotic should be investigated. It's great to see clinicians think along these lines, since this is an important step towards expanding the revolution lately seen in Blastocystis research, exemplified by studies such as that by Audebert et al. mentioned above.

So, wishing you all a Happy New Year and a great 2017, I'd like to finish by encouraging you to stay tuned; soon, I will be posting some very... interesting... neeeeeeewwwws...




References:

Audebert C, Even G, Cian A, Blastocystis Investigation Group., Loywick A, Merlin S, Viscogliosi E, & Chabé M (2016). Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Scientific Reports, 6 PMID: 27147260 

Kurt Ö, Doğruman Al F, & Tanyüksel M (2016). Eradication of Blastocystis in humans: Really necessary for all? Parasitology International, 65 (6 Pt B), 797-801 PMID: 26780545

Scanlan PD, Knight R, Song SJ, Ackermann G, & Cotter PD (2016). Prevalence and genetic diversity of Blastocystis in family units living in the United States. Infection, Genetics and Evolution, 45, 95-97 PMID: 27545648

Thursday, November 10, 2016

This Month in Blatstocystis Research (OCT 2016)

A few things to highlight:

I'm very pleased to announce the Special Issue on Blastocystis recently appearing in Parasitology International - go here for the list of contents. The papers included in this issue represent the breadth of the contributions made to the 1st International Blastocystis Symposium, which took place last year in Ankara. A couple of review and opinion articles written by members of the Scientific Committee are accompanied by several articles outlining original research findings that were presented at the symposium. This special issue is particularly useful for younger researchers who wish to familiarise themselves with some of the methods that are currently in use in surveys of Blastocystis.
Readers should not expect to find articles on Blastocystis in a microbiota context; nor should they expect to see data from seminal studies that challenge the view that Blastocystis is a possible pathogen. Nevertheless, there is an interesting opinion paper with the title "Eradication of Blastocystis in humans--really necessary for all?"

Led by Dr Alison Jacob and Dr Graham Clark, London School of Hygiene and Tropical Medicine, our group just published an article on a comparative study of Blastocystis mitochondrial genomes. In general, mitochondrial genomes differ vastly in length, structure, and gene content across organisms, and by studying these genomes it has been possible to develop hypotheses on how these organisms have evolved including the adaptive/non-adaptive processes involved in shaping organismal and genomic complexity. Unlike most anaerobic eukaryotes, Blastocystis does not have true mitochondria but has mitochondrion-related organelles (MROs; also referred to as mitochondrion-like organelles [MLO]) that contain a genome. In the study in question, we sequenced and compared mitochondrial genomes from subtypes 1, 2, 3, 4, 6, 7, 8, and 9. All of them have the same genes in the same order, but two curiosities were noted. One gene, called orf160, as stop codons near the beginning of the coding region in most subtypes. A second gene, coding for ribosomal protein S4, lacks a start codon in some subtypes.
In both cases, these characteristics would normally prevent a gene from being expressed, but because these genes are otherwise conserved and most of the gene is 'intact', it seems likely that the genes are functional. Ribosomal protein S4 is considered an essential component of the ribosome needed for protein synthesis in the organelle. How the genes are expressed to produce functional proteins remains a mystery, - just one more peculiarity of Blastocystis!

In the growing pool of articles exploring relationships between intestinal parasites and gut microbiota, I was pleased to discover an article by Iebba et al. (2016) on "Gut microbiota related to Giardia duodeanlis, Entamoeba spp. and Blastocystis hominis infections in humans from Côte d'Ivoire". In this observational study, the authors used qPCR to detect groups of bacteria that are indicative of dysbiosis vs eubiosis, dysbiosis being a perturbed, imbalanced microbiota and eubiosis being a healthy, balanced gut microbiota. The authors found that individuals with Blastocystis and Entamoeba were characterised by eubiosis, while individuals with Giardia were characterised by dysbiosis. It says that samples (n = 20) were randomly chosen, but even so, the number of samples tested was low, and care should be taken when interpreting the results. The overall approach, however, is interesting, and somewhat resembles the work that we have been doing in our lab (ref). I also recently blogged about another study with a similar aim (go here to view the post).

I would also like to bring your attention to the EMBO Conference "Anaerobic protists: Integrating parasitology with mucosal microbiota and immunology", which will take place in Newcastle upon Tyne, UK in Aug/Sep 2017 (image). I will be there doing my best to deliver a stimulating talk on current knowledge and advances in Blastocystis and Dientamoeba research. You can visit the conference website by folloing this link

References:

Dogruman-Al F, Stensvold CR, & Yoshikawa H (2016). Editorial - PAR INT - special issue on Blastocystis. Parasitology international, 65 (6 Pt B) PMID: 27742000

Iebba V, Santangelo F, Totino V, Pantanella F, Monsia A, Di Cristanziano V, Di Cave D, Schippa S, Berrilli F, & D'Alfonso R (2016). Gut microbiota related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis infections in humans from Côte d'Ivoire. Journal of infection in developing countries, 10 (9), 1035-1041 PMID: 27694739

Jacob AS, Andersen LO, Pavinski Bitar P, Richards VP, Shah S, Stanhope MJ, Stensvold CR, & Clark CG (2016). Blastocystis mitochondrial genomes appear to show multiple independent gains and losses of start and stop codons. Genome biology and evolution PMID: 27811175

Smith DR (2016). The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Briefings in functional genomics, 15 (1), 47-54 PMID: 26117139

Friday, September 2, 2016

This Month in Blastocystis Research - AUG 2016

Last month, I asked about your thoughts on Blastocystis and age... is age a limiting factor with regard to the susceptibility to infection/colonisation? One of the reasons why I asked is that we and others have noted that Blastocystis becomes more and more common with age... at least until a certain stage in life (adulthood) and at least in certain countries.

Among the answers I got, I'd like to highlight one from Dr Graham Clark, London School of Hygiene and Tropical Medicine, with whom I've had the tremendous privilege of working for more than 10 years. Dr Clark writes:

In my opinion, prevalence is a mixture of three things: exposure, immunity and ‘loss’.


To illustrate the latter, infection with Entamoeba histolytica (and probably other Entamoeba species) can be lost spontaneously with a half-life of 13 months (in one study at least, Blessmann et al. 2003 J Clin Micro). There is no evidence that immunity is involved, just chance. Extrapolating to Blastocystis, I suspect the same is true – loss can occur spontaneously but what the half-life of colonisation is we have no idea and it would be difficult to evaluate without high resolution genotyping (which is what we used in E. histolytica). If you had a population of infected individuals that were followed over time and a high res[olution] typing method you could calculate rates of loss and of new infections, as we did for E. histolytica.


I do not think there is any evidence for immunity to Blastocystis infection, which leaves exposure. If the rate of exposure is greater than the rate of spontaneous loss then you would get an increase in prevalence with age. I suspect (hope!) exposure is higher in children for behavioural reasons than in adults so you will get a levelling out of prevalence with age to a point where the rate of new infection balances the rate of spontaneous loss. If exposure stays high then this plateau may not be reached.


So why are other parasites different? Probably there is immunity leading to clearance of the infection in children.
Certainly, we have quite good data from Ireland indicating that once established, Blastocystis will keep colonising the GI tract for ages (i.e., many years). Regarding loss, I hope that I'll soon be able to refer to some data that we have obtained in a study on experimental animals.

Exposure is obvisouly something to think about - Blastocystis is transmitted by ingesting food/drink contaminated with Blastocystis and/or improper hygiene. The fact remains that studies using molecular methods for detection have identified most children in Sub-Saharan African study populations as being colonised, while in more developed countries, parasites such as Dientamoeba fragilis are more common in toddlers and smaller children; Blastocystis emerges and gains in prevalence only in teenagers and older individuals... roughly speaking.

One aspect of colonisation that I've been very interested in myself, is whether it's each individual's gut microbiota that "decides" whether Blastocystis colonisation/infection establishes upon exposure. We are seeing some data emerging from a couple of labs on this, and maybe next month I'll be able to bring you up to speed in this matter. To my knowledge, there is not a lot of precedence–if any–for such a situation, but the fact that we have seen quite clear differences in gut microbiota patterns between those who have Blastocystis and those who have not, has left me thinking...

If you want to contribute to the discussion, please drop a line. 

References:

Blessmann, J., Ali, I., Ton Nu, P., Dinh, B., Ngo Viet, T., Le Van, A., Clark, C., & Tannich, E. (2003). Longitudinal Study of Intestinal Entamoeba histolytica Infections in Asymptomatic Adult Carriers Journal of Clinical Microbiology, 41 (10), 4745-4750 DOI: 10.1128/JCM.41.10.4745-4750.2003

Scanlan PD, Stensvold CR, Rajilić-Stojanović M, Heilig HG, De Vos WM, O'Toole PW, & Cotter PD (2014). The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS microbiology ecology, 90 (1), 326-30 PMID: 25077936

Monday, June 13, 2016

This Month in Blastocystis Research (MAY 2016)

Very much belated, I'm back to give you the MAY entry of the 2016 "This Month in Blastocystis Research" blog series.

I'm basically just going to highlight a few papers and some other interesting things.

Ever since our metagenomics paper came out, it's as if the interest in Blastocystis in a gut microbiota context is exploding. If you put "Blastocystis microbiota" into the search box in PubMed, today you will get 20 hits, most of which papers are extremely interesting and of course very central to this type of research. Given the number of times I've addressed the relevance of studying Blastocystis in relation to gut microbiota diversity on this blog, I'll try not to flog it to death this time!

Over at Gut Microbiota For Health, a blog was posted a week ago summarising the recent findings of Audebert and colleagues and comparing them to data coming out from our lab. You can read the blog here. Using the Ion Torrent PGM sequencing platform, 16S rDNA gene sequencing was performed on genomic DNAs extracted from Blastocystis-positive and - negative stool samples. What Audebert hypothesised was that if Blastocystis is associated to intestinal disease such as for instance diarrhoea, one would expect to find a higher degree of microbiota perturbation (dysbiosis) in Blastocystis carriers than in non-carriers. Meanwhile, and similar to what we have have published, they reported that gut microbiota diversity is higher in Blastocystis carriers than in non-carriers, indicating that Blastocystis is generally a marker of a healthy gut microbiota rather than a perturbed one. Again similar to what we found in the metagenomics paper, Audebert et al. saw that the bacterial families Ruminococcaceae and Prevotellaceae were also more abundant in carriers than in Blastocystis-negative patients, while Enterobacteriaceae were enriched in Blastocystis-negative patients. What is also really interesting is the fact that the genera Faecalibacterium and Roseburia had a significantly higher abundance in Blastocystis-positive patients. These genera contain bacteria that produce butyrate which has a lot of important and beneficial functions. Loss of butyrate producers is seen for instance in patients with inflammatory bowel disease. The group used some of the same methods as we used in our study presented recently at ECCMID, including rarefaction analysis and calculation of Chao1 indices.

Together with colleagues at the Technical University of Denmark, we were lucky to have The European Journal of Clinical Microbiology and Infection publish our novel data on associations between common single-celled intestinal parasites--Blastocystis and Dientamoeba--and groups of intestinal bacteria, as evidenced by qPCR assays. We confirmed the findings from our metagenomics study, by finding a relatively lower abundance of Bacteroides in the parasite-positive samples than in the -negative ones.

By the way, on the Gut Microbiota For Health site you will find an e-learning course on Microbiota provided by the Gut Microbiota and Health Section of the European Society of Neurogastroenterology and Motility (ESNM) and developed for gastroenterologists.

Speaking of e-learning and gastroenterology: For a couple of years, I've had the immense pleasure of being part of the United European Gastroenterology e-learning task force. We host a resource - UEG Education - developed mainly for gastroenterologists, boasting e-learning courses, "Decide-on-the-Spot" series, "Mistakes in..." series, blogs, and other features. I have included a UEG widget in the right side bar of my blog - please click it!

Back to Blastocystis! Graham Clark and I published a personal view on the current status of Blastocystis in Parasitology International, in which we summarise the development and recent advances in Blastocystis research. The article is expected to form part of a special section/issue dedicated to Blastocystis to commemorate last year's 1st International Blastocystis Symposium in Ankara.

My colleague Juan-David Ramirez and his colleauges published data from a subtyping study from South America including 346 samples. More than 85% of the subtypes found belonged to either ST1, ST2, and ST3 as expected, while the rest belonged to ST4, ST5, ST6, ST7, ST8, ST12 and what they call a new subtype. I think this is the first time ST12 has been reported in humans. Despite the fact that the authors accounted for the databases that they used for subtype and allele calling, there is no mention on the criteria by which the subtypes were called in the NCBI database (i.e., in those cases where no hits could be found at the online Blastocystis database). For instance, what level of similarity was used to identify three samples as ST12? On the same note, which level of similarity was used to identify nine samples as belonging to a "novel subtype" (also, - was it the same sequence across the nine samples?). When dealing with a potentially novel subtype, usually the entire SSU rRNA gene is seqeunced and subjected to phylogenetic analysis, and sequences have not yet been made public in GenBank, so there is no possibility to work with the data so as to validate the findings (which are highly accurate, I'm sure). I think this information is critical to interpreting the data. Nontheless, the work that went into the sampling and the lab work should be highly accredited.

References:

Andersen LO, Bonde I, Nielsen HB, & Stensvold CR (2015). A retrospective metagenomics approach to studying Blastocystis. FEMS microbiology ecology, 91 (7) PMID: 26130823

Audebert C, Even G, Cian A, Blastocystis Investigation Group, Loywick A, Merlin S, Viscogliosi E, & Chabé M (2016). Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Scientific reports, 6 PMID: 27147260  

O'Brien Andersen L, Karim AB, Roager HM, Vigsnæs LK, Krogfelt KA, Licht TR, & Stensvold CR (2016). Associations between common intestinal parasites and bacteria in humans as revealed by qPCR. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology PMID: 27230509 

Ramírez JD, Sánchez A, Hernández C, Flórez C, Bernal MC, Giraldo JC, Reyes P, López MC, García L, Cooper PJ, Vicuña Y, Mongi F, & Casero RD (2016). Geographic distribution of human Blastocystis subtypes in South America. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 41, 32-5 PMID: 27034056

Stensvold CR, & Clark CG (2016). Current status of Blastocystis: A personal view. Parasitology international PMID: 27247124