Wednesday, December 11, 2013

Molecular Epidemiology: Developing a Language

Initiatives towards standardising diagnostic methods and convening on taxonomy and reference data is extremely important in a world where multiple research teams independently carry out research using molecular markers to identify and differentiate species and genotypes of infectious organisms; such activity is crucial to identify patterns of transmission, differences in virulence, and opportunities for control and intervention. Without such standards, efforts to survey and surveil such organisms would be more or less futile, and so they are the backbone of molecular epidemiology.

Having seen that a variety of morphologically similar but genetically diverse Blastocystis organisms found in humans could in fact colonise a range of different hosts, we realised back in 2006 that all these variants could not all be 'Blastocystis hominis', which was then the species name used for Blastocystis found in humans, and together with colleagues we took to revisiting Blastocystis terminology: We recognised that we did not know enough about host specificity and genetic diversity to be able to come up with relevant species names, and so we invented (or maybe not invented, but at least 'formalised') the subtype system, a sort of a barcode system, where genetically similar (typically 98-100%) organisms are assigned to the same subtype, hence ST1, ST2, ST3, etc., which we today now know so well.

Slapeta now suggests a barcoding system for Cryptosporidium. This single-celled parasite takes a major toll on the health of infants and toddlers in developing countries (in some places surpassed only by norovirus), and may also cause debilitating disease in immunocompromised. The nomenclature for Cryptosporidium is very complicated for those of us who are not experts; for instance, I only recently realised that C. parvum may now only refer to the Mouse I genotype and not the 'common' or 'traditional' C. parvum (which now appears to be C. pestis), which is common in both humans and cattle. However, there is a debate going on as to which taxonomy should be followed, and whether this novel leap in 'Cryptosporidium taxonomy revision' can be endorsed by Slapeta's fellow Crypto experts, remains to be seen. Contentiousness aside, barcoding Cryptosporidium does seem relevant due to the fact that the host specificity of Cryptosporidium is relatively loose; for instance humans and cattle are known to share at least 9 species of Cryptosporidium... 

In his paper, Jan Slapeta lists all the known species of Cryptosporidium (in the 'revised' terminology), and even includes GenBank reference strains for common molecular markers such as actin, HSP70 and COWP1 used for genotyping. Interestingly, he does not include the GP60 marker, a molecular marker for which the terminology is also discordant.

Slapeta moreover includes a file with reference SSU rDNA sequences that enable a standardisation of genetic analyses. This year, we did in fact a similar thing for Blastocystis: Along with our 2013 Protist paper surveying Blastocystis subtypes in animals (including the identification of a couple of new subtypes!), we uploaded a reference alignment consisting of some complete SSU rRNA gene sequences present in GenBank; one or more for each of the now known 17 subtypes; more will be added as more subtypes are discovered. The file can be downloaded when accessing the online version of the paper, and we hope that everyone interested in analysing sequences that represent potentially novel subtypes will use this reference alignment (which has been edited to eliminate regions of ambiguous base alignment); it should be quite helpful. Again, I also bring your attention to the pubmlst Blastocystis database, where fast files obtained by Blastocystis barcoding can be queried in batches for quick analysis of large amounts of sequence data. There's a Youtube video here on Blastocystis barcoding and how to use the pubmlst database.

Consensus on methods, terminology and diagnostic algorithms is essential to developing a common language and understanding of how infectious organisms impact our lives; without it,  confusion wreaks havoc with our efforts.

Literature:

Alfellani MA, Taner-Mulla D, Jacob AS, Imeede CA, Yoshikawa H, Stensvold CR, & Clark CG (2013). Genetic diversity of Blastocystis in livestock and zoo animals. Protist, 164 (4), 497-509 PMID: 23770574

Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acácio S, Biswas K, O'Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, & Levine MM (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet, 382 (9888), 209-22 PMID: 23680352

Šlapeta J (2013). Cryptosporidiosis and Cryptosporidium species in animals and humans: a thirty colour rainbow? International Journal for Parasitology, 43 (12-13), 957-70 PMID: 23973380  

Stensvold CR, Suresh GK, Tan KS, Thompson RC, Traub RJ, Viscogliosi E, Yoshikawa H, & Clark CG (2007). Terminology for Blastocystis subtypes--a consensus. Trends in Parasitology, 23 (3), 93-6 PMID: 17241816

Striepen B (2013). Parasitic infections: Time to tackle cryptosporidiosis. Nature, 503 (7475), 189-91 PMID: 24236315

Xiao L, Ryan UM, Fayer R, Bowman DD, & Zhang L (2012). Cryptosporidium tyzzeri and Cryptosporidium pestis: which name is valid? Experimental Parasitology, 130 (3), 308-9 PMID: 22230707 

No comments:

Post a Comment