Showing posts with label 16S. Show all posts
Showing posts with label 16S. Show all posts

Tuesday, March 31, 2015

This Month in Blastocystis Research - MAR 2015

"Show me your gut bacteria and I'll tell you if you're infected with Entamoeba"

One of my 'partners in crime', science reporter Jop de Vrieze, made me aware of a study just published now by Elise R Morton and colleagues. The study appeared in bioRxiv—The Preprint Server for Biology, operated by Cold Spring Harbor Laboratory. The study is totally in line with one of the research foci in our lab.

The paper is called 'Variation in rural African gut microbiomes is strongly shaped by parasitism and diet', and can be downloaded here. The backbone in this type of research is the recognition that studies revealing a large contrast between the microbiomes of populations in developing countries and those of populations in urban industrialised areas have shown that geography is an important factor associated with the gut microbiome, but that such studies yet have to disentangle the effects of factors such as climate, diet, host genetics, hygiene and parasitism.

It's very refreshing that for once, 'parasitism' is included in such considerations. As mentioned in one or more of my previous blog posts, we have metagenomics data stongly indicating that Blastocystis colonisation is associated with certain microbial communities. As of yet, we have no idea about cause and effet, but the idea alone is immensely intriguing.

A large and a small cyst of Entamoeba coli. Courtesy of Dr Marianne Lebbad.
Now, Morton et al. have produced data that suggest that the presence of Entamoeba—another gut-associated eukaryotic genus comprising multiple species of varying pathogencitiy—is strongly correlated with microbial composition and diversity. They showed that an individual's liability to being infected by Entamoeba could be predicted with 79% accuracy based on gut microbiome composition.

The authors used 16S PCR and Illumina-based sequencing of 16S amplicons, and I could have wished that molecular assays, e.g., the 18S PCR that we have developed in our lab + associated software, had also been used to test the faecal samples from the 64 individuals enrolled in the study in order to obtain more precise data, not only on Entamoeba but also on other human-associated gut protists, such as Blastocystis.

While alpha (intra-host) diversity of Entamoeba-positive individuals was significantly higher than that of Entamoeba-negative individuals, analysis of the beta (inter-host) diversity revealed that gut communities across Entamoeba-positive individuals were more similar than across Entamoeba-negative individuals, suggesting that, as alpha diversity increases, there are fewer potential stable states for individual gut communities, or that infection by Entamoeba drives changes in the microbiome that are dominant over other factors.

Right—this is Entamoeba, I know, but in principle, the type of analyses that were performed in the present study could be applicable to Blastocystis, Dientamoeba, and other gut parasites, which may help us understand their role in health and disease. Are these parasites able to influence gut microbiota? Can they be used for gut microbiota manipulation? Or do they only infect people with certain microbiota profiles? Time will show... maybe.

For those of you who would like to read more about what is shaping our microbiomes and how the gut microbiota may impact on our gastrointestinal health, I recently did a couple of blog posts for United European Gastroenterology (UEG) Education that might be of some interest:

Are we finally saluting the fungal kingdom as a co-ruler of GI health and disease?

The intestinal microbiome—Rosetta Stone or Tower of Babel?


Reference:

Morton ER, Lynch J, Froment A, Lafosse S, Heyer E, Przeworski M, Blekham R, Segurel L.
Variation in rural African gut microbiomes is strongly shaped by parasitism and diet. bioRxiv doi





Saturday, February 16, 2013

Waiting For The Human Intestinal Eukaryotome

We were lucky enough to have a paper accepted for publication in the ISME Journal (Nature Publishing Group) in which we call for data on the "human intestinal eukaryotome".

In the paper, we start out:

"Recent developments in Next Generation Sequencing (NGS) technologies have allowed culture-independent and deep molecular analysis of the microbial diversity in faecal samples, and have provided new insights into the bacterial composition of the distal gut microbiota. Studies of the microbiome in different patient groups using metagenomics or 16S rRNA gene sequencing are increasing our knowledge of how the microbiota influences health and disease. The majority of recent advances in our understanding of human microbiota structure and dynamic changes in disease were made through phylogenetic interrogation of small subunit (SSU) rRNA (Paliy and Agans 2012). However, until recently such studies have generally failed to include data on common eukaryotic, endobiotic organisms such as single-celled parasites and yeasts ('micro-eukaryotes'). This deficiency may strongly bias the interpretation of results and ignoring an entire kingdom of organisms is a major limitation of human microbiome studies."