Friday, September 28, 2012

Brazilian Society of Protozoology - 2012 meeting

It's time to bone up on my Portuguese! Off to

XXVIII Reunião Anual da Sociedade Brasileira de Protozoologia

in Caxambu, Brazil tomorrow.

Giving keynote lecture on 3rd of October. Title of talk: "Blastocystis - friend or foe?"

The lecture is mainly based on thoughts presented in my recent paper: "Thinking Blastocystis Out of The Box" (PMID: 22704911) and output from our most recent studies.


Sunday, September 2, 2012

Bugs Galore!

After spending more than 8 years in clinical microbiology with special reference to parasitology, I’ve come to realise that it truly is a bug’s life! Use of nucleic acid-based methods such as PCR in routine clinical microbiology diagnostic labs have revealed that single-celled parasites are colonising the intestine of up to 50% of the Danish population! And so what? Well, this finding has several implications.

A couple of months ago I revisited Why it is a bugs life by Jörg Blech (The Guardian (2002)). Speaking of numbers, - I wonder which one is the most successful eukaryote in terms of numbers? Blastocystis? Dientamoeba? Or any other “Parasite sp.”? After realising that microscopy methods allow us to see only the very tip of the iceberg and after adding PCR to our routine diagnostics, we have found a few examples of “novel” parasitic species and many more may be in store for us. Morphologically identical organisms, such as those belonging to Iodamoeba bütschlii, may be found in both human and non-human hosts and may differ genetically across the nucelar small subunit rRNA gene by up to more than 30%! This is quite astonishing given the fact that the difference between human and murine small subunit rDNA is about 1%! Since these data have been established only recently, obviously no one knows the respective clinical significance of these morphologically similar but genetically very different lineages, and further studies may reveal differences in pathogenicity as seen in other amoebic genera. Blastocystis and Entamoeba coli are somewhat similar examples.

Our results reveal that faecal-oral transmission is much more common in Denmark - a highly industrialised country where drinking water comes from waterworks (i.e. no surface water supplies), where outbreaks even due to bacteria are scarce, and where authorities spend 1.2 billion DKK on food safety and control. Today, 90% of dwellings in Denmark (5.6m citizens) are connected to efficient sewage systems, and Denmark has more than 1,400 treatment plants to purify wastewater from households, businesses and institutions. But somewhere the chain pops off… Even in Denmark it is “bugs galore”, which means that faecal exposure is much more common that we would probably like to think. Intestinal protists (primarily Blastocystis and Dientamoeba) are telltales of exposure to faecal contamination and faecal-oral transmission.

In Denmark, 90% of dwellings are connected to efficient sewage systems, and the country has more than 1,400 treatment plants.

However, we might also learn to see these parasites as other types of indicators. In our experience Danish patients with inflammatory bowel disease (IBD) represent a cohort of people whose gut flora is remarkably different from that of other cohorts (patients with irritable bowel syndrome (IBS) and patients with non-IBD/non-IBS diarrhoea): Apparently IBD patients don’t harbour parasites. This can in part be explained by the fact that some IBD patients have had bowel resection, but even IBD patients with in intact bowel system are generally negative for parasites.

We know that in highly developed countries the prevalence of helminth infections has gone down over the past few decades due to improved hygiene measures, but maybe also due to other reasons, which have not been clarified, but as we have seen, many of us are still positive for one or more intestinal parasites. However, most IBD patients do not have any parasites at all. This correlates well with the hygiene hypothesis, and it may be so that not only helminths, but also amoebae, which are able to colonise our guts for months and even years, may be co-responsible for 1) preventing us from developing inflammatory bowel disease and other autoimmune diseases by immunomodulatory mechanisms, and 2) maintaining a sound intestinal flora and ecology. Or is it so that these protists are dependent on a certain gut ecology or gut flora in order to colonise our intestines for a longer period, and in this way, they can be seen as indicators of a certain gut microbiota? Do they have any modulatory functions or do they happen to "lead their own life"?

As a parasitologist and worshipper of most things eukaryotic, I was both pleased and disconcerted after leaving the MetaHIT conference in Paris in March. Pleased, since the stratification of people into enterotypes and correlation of enterotypes to disease phenotypes suited my naïve, B/W perception of the world, but disconcerted since all presentations and posters addressed only bacteria (and virus to a minor extent, - maybe one on archaea even?). But, how about intestinal yeasts and parasites? Where in the gene catalogues and pools of metagenomic data could I find information on eukaryotes? Nowhere. Which hopefully boils down to methodological limitations rather than absence of interest.

The concept of paving an avenue of new knowledge with metagenomics data is holistic in its approach, but it currently fails to encompass a common part of the intestinal microbiota, possibly due to methodological limitations. However, we are probably facing the imminent inclusion of eukaryotic data in metagenomic studies, and this will enable us to investigate the potential role of intestinal protists and maybe yeasts as biomarkers of certain enterotypes and maybe even disease or health phenotypes.

Further reading:

Stensvold CR, Lebbad M, & Clark CG (2012). Last of the human protists: the phylogeny and genetic diversity of Iodamoeba. Molecular biology and evolution, 29 (1), 39-42 PMID: 21940643

Stensvold CR (2012). Thinking Blastocystis out of the box. Trends in parasitology, 28 (8) PMID: 22704911

Sunday, August 19, 2012

The Potential Role of Our Microbiome Ecosystems

For those who like these pop-sci articles on the still somewhat conjecture-like but very inspiring theories about the role of our intestinal microbiome in health and disease, here's a link to an article from The Economist (18 AUG 2012):

The Human Microbiome: Me, myself, us

And let me reiterate: We still don't know much about mikro-eukaryotes in all this... do they play a role as well? And how do they cope with different types of microbiomes?

Anyways, enjoy!

Saturday, August 18, 2012

To Treat or Not To Treat... But How?

In the "To Treat or Not To Treat" series (please look up previous post here), we have come to the "...But How?" episode.

Blastocystis may be susceptible to a number of drugs - in vitro. In vitro is not the opposite of in vivo. In vitro just  means that the test has been done on an organism that has been isolated from its usual habitat and tested e.g. in a flask, test tube, etc. In the lab, strains can be challenged and manipulated in multiple ways, but there is no guarantee that the outcome of an in vitro susceptibility test is reproducible in vivo, i.e. when the organism is challenged in its natural habitat and under "natural" conditions. Hence, if you test Blastocystis against metronidazole or any other compound (such as iodine) in vitro, and you observe an effect, you cannot rely on being able to reproduce the effect in vivo. This is due to a variety of reasons including pharmaco-kinetics and pharmaco-dynamics, including the ability of the drug to reach the parasite in its ecological niche, impact of the drug on other micro-organisms, drug interactions, strain-dependent differences in susceptibility (including inherent or acquired resistance), etc.

We recently described a case in which a woman with irritable bowel syndrome (according to the Rome III criteria) had both Blastocystis subtype 9 (ST9) and Dientamoeba fragilis. In order to try and eradicate the parasites and to see whether any eradication would impact on her clinical situation, she received multiple courses of antibiotic treatment:

1. Metronidazole (750 mg x 3/d for 10 days)
2. Tetracycline (500 mg x 4/d for 10 days)
3. Trimethoprim + Sulfamethoxazole (TMP 800 mg + SXT 160 mg x 2/d for 7 days)
4. Mebendazole + Metronidazole (100 mg x 2 separated by 2 weeks; subsequently metronidazole as in 1.)
5. Paromomycin + Metronidazole (PM 500 mg + MZ 170 mg x 3/d for 10 days)

Mebendazole was given to the entire household due to suspicion of pinworm infection running in the family that could be a potential reservoir of D. fragilis (re-)infection.

No clinical alleviation was seen throughout this period.

PCR-based detection of Blastocystis and D. fragilis was used to evaluate  faecal samples 5-10 days post-treatment: Microbiological effect was seen only on D. fragilis which was cleared only after treatment with PM + MZ (5).

So, Blastocystis "survived" this series of antimicrobial treatment. In Denmark, no further relevant treatment options are available for general use (actually, even the use of Humatin (PM) needs a special license).

None of the patient's family members or pets were found to be colonised by the same strain, probably indicating that there was no "local" reservoir for ST9, and that the repeated finding of ST9 was not due to re-infection.

It may be so that Blastocystis requires a certain intestinal bacterial flora to establish. However, we expect that substantial perturbations in the intestinal flora must have taken place during the patient's various treatments, and therefore Blastocystis must be able to quickly overcome and adapt to such perturbations. It may add to the conundrum that in this case the woman harboured ST9, which is only very rarely seen in humans, and we might therefore deduce that its presence would be more volatile. No animal/environmental reservoir has yet been identified for ST9.

There is no doubt that microbiomic profiling of the intestinal flora would be of great benefit in a case like this. If data could be achieved on the impact of these drugs on the relative bacterial structure and function by metagenomic approaches, then this would allow us to explore the changes in the general flora that Blastocystis is capable of withstanding. Certainly, none of these drugs had a measurable in-vivo protistocidal effect on Blastocystis when administered as shown.

I re-emphasise that it is far from certain that Blastocystis is capable of inducing disease, directly or indirectly, and hence, we do not know if, and in which situations, we should aim at eradicating it. Suffice it to say, that in our hands and with the compounds that are available for general use in Denmark, it is apparently extremely challenging to eradicate Blastocystis, if at all possible.

Microbe Resilience (Source)

Further reading:

Coyle CM, Varughese J, Weiss LM, & Tanowitz HB (2012). Blastocystis: to treat or not to treat... Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 54 (1), 105-10 PMID: 22075794

Engsbro AL, & Stensvold CR (2012). Blastocystis: To Treat Or Not To Treat...But How? Clinical infectious diseases : an official publication of the Infectious Diseases Society of America PMID: 22893582

Stensvold CR, Smith HV, Nagel R, Olsen KE, & Traub RJ (2010). Eradication of Blastocystis carriage with antimicrobials: reality or delusion? Journal of clinical gastroenterology, 44 (2), 85-90 PMID: 19834337

Friday, August 10, 2012

Is This A New Subtype?

To quote one of my colleagues attending the recent IWOP 2012 meeting in Tarrytown, NY, Blastocystis subtyping in humans and animals is becoming 'trendy', and so we keep trying to advocate for a standardisation of the metholodology of Blastocystis subtyping.

We recently changed the title of our page at www.pubmlst.org/blastocystis so that now it is called Blastocystis Subtype (18S) and Sequence Typing (MLST) Databases, and we added some text to front page:

In terms of genetic markers, the barcode region (Scicluna et al., 2006) is by far the best represented in publicly available sequence databases, and the correct subtype can be identified by BLAST analysis in the sequence database at the present site. Blasting against this database has the added advantages, compared to using GenBank, of automatically assigning allele types to the SSU-rDNA as well as using the consensus subtype nomenclature (unlike GenBank where the subtype is included only if one was part of the accession submission and no attempt to impose a standard nomenclature is made). In case the sequence does not match any of the ones in the database despite full coverage of the region, this indicates that the sequence represents a new allele or maybe even a new subtype depending on the amount of variation. If a new subtype is suspected, we suggest doing PCR and sequencing of the complete SSU rRNA gene with subsequent phylogenetic analysis using reference sequences.

Now, the last bit is extremely important. We have seen examples of researchers (including ourselves!) assigning sequences to a new a subtype in the absence of complete SSU rDNA data (in fact complete sequences for ST10-ST14 are not yet publicly available!). Doing so has a least two major limitations/drawbacks: Far from all SSU rDNA regions have been validated as being representative of the whole SSU rRNA gene in terms of phylogenetic analysis, and therefore phylogenetic inferences based on non-validated regions may have little or at least less support than anticipated. Moreover, if someone analyses e.g. position 600-1600, and phylogenetic analysis based on this region reveals a potentially new subtype, this makes it impossible for his/her colleague who has data covering positions 1-600 from a Blastocystis isolate that may also represent a new subtype to ascertain whether it might be same subtype (see example below)!

Obtaining complete SSU rDNA sequences directly from faecal DNA may be a cumbersome task but is sometimes possible by combining sequence-specific primers with low-specificity primers such as the RD5 and the RD3 primers (Clark, 1997). If a cultured isolate is available, obviously this makes complete SSU rDNA sequencing much easier.

While it appears that the number of subtypes occurring in humans stays around 9, our gut feeling is that we are yet to uncover quite a few subtypes colonising non-human mammals, and it's great to see an increasing number of teams exploring the genetic diversity of Blastocystis. For instance, Dr Ronald Fayer and his group recently published exciting data on a new Blastocystis subtype in cattle, which they named ST14 (Fayer et al., 2012).

Importantly, caution should be taken to avoid creating confusion in subtype terminology. Confusion can arise when independent researchers assign the same new subtype name (e.g. ST14, ST15, etc.) to novel sequences which in fact belong to different ribosomal lineages, or when incomplete SSU rDNA sequence data are used; this situation was seen recently, when Petrasova et al. (2011), assigned a Colobus sequence to ST5, although it was in fact a ST13 sequence (Clark et al., in press); the situation arose, since Petrasova et al. (2011) did not have data covering the region currently available for ST13 (Parkar et al., 2010), and therefore believed that their sequence was a unique ST5 variant. As for ST14, less than 500 bp are currently available, and these 500 bp are not in the barcode region, making it difficult for all teams using barcoding to compare their data. And so we would like to advocate for making complete SSU rDNA sequences publicly available (Genbank) for potentially new subtypes, for at least two reasons:

1. Phylogenetic inferences based on the complete SSU rDNA will be more robust than those obtained from analysing shorter sequence streches.

2. Complete seqeunces are needed for reference since subtype screening typically includes a single round PCR such as barcoding (Scicluna et al., 2006) amplifying about 550 bp; in the situation where complete SSU rDNAs are available for all known subtypes, it will be quick to analyse, whether a sequence may represent a new subtype, since this will be independent on the SSU rDNA region studied.We therefore hope that complete SSU rDNA sequences will soon be made publicly available for ST10-ST14.

So, when does a complete SSU rDNA sequence represent a new subtype? Well, we have a review paper in press in Advances in Parasitology on recent developments in Blastocystis research, which will be published in less than six months probably, and which also touches on this topic; once the paper is published, I will try and make a summary our thoughts on this...

Further reading:


Clark CG (1997). Extensive genetic diversity in Blastocystis hominis. Molecular and biochemical parasitology, 87 (1), 79-83 PMID: 9233675

Fayer R, Santin M, & Macarisin D (2012). Detection of concurrent infection of dairy cattle with Blastocystis, Cryptosporidium, Giardia, and Enterocytozoon by molecular and microscopic methods. Parasitology research PMID: 22710524

Parkar U, Traub RJ, Vitali S, Elliot A, Levecke B, Robertson I, Geurden T, Steele J, Drake B, & Thompson RC (2010). Molecular characterization of Blastocystis isolates from zoo animals and their animal-keepers. Veterinary parasitology, 169 (1-2), 8-17 PMID: 20089360

Petrášová J, Uzlíková M, Kostka M, Petrželková KJ, Huffman MA, & Modrý D (2011). Diversity and host specificity of Blastocystis in syntopic primates on Rubondo Island, Tanzania. International journal for parasitology, 41 (11), 1113-20 PMID: 21854778
 
Scicluna SM, Tawari B, & Clark CG (2006). DNA barcoding of blastocystis. Protist, 157 (1), 77-85 PMID: 16431158

Thursday, July 19, 2012

Micro-Eukaryotic Diversity in The Human Intestine

While we’re currently being flooded by papers on the intestinal microbiome, we still have very few dealing with the intestinal “micro-eukaryome” (forgive me my "badomics", I should have known better after reading this piece by Dr Eisen).

Hamad et al., just published their work on “Molecular Detection of Eukaryotes in a Single Human Stool Sample from Senegal” in PLoS One. They used a panel of 22 broad-specificity eukaryotic primers on genomic DNA extracted directly from faeces, cloned PCR products and did a blast search of the resulting sequences. They found about 18 micro-eukaryotic species in this particular faecal sample, most of which were fungi, and only two of which were “parasites”, namely Blastocystis sp. (subtype not given) and Entamoeba hartmanni, a so-called non-pathogenic amoebic species.They used both culture and culture-independent methods (PCR directly on genomic DNA from faeces) for the detection of intestinal fungi.

The study is interesting for a number of reasons:

1) It is one of the few papers out there on micro-eukaryotic diversity in faecal samples (other ones are listed in the reading list below), and we still know very little about micro-eukaryotes' potential interaction with the host and their ecological niche.

2) Many fungal species were detected by cloning of PCR products obtained by various primer pairs. It is possible that many of these are fungi stemming from the environment and diet, and not actually fungi colonizing the intestinal tract of this person; indeed the primers were able to pick up eukaryotic DNA such as that from tomatoes and common hop, stemming from the person’s diet. This is also one of the draw-backs of studies of fungi in stool samples: Even for mycologists it may prove difficult to determine which fungi are likely to be colonisers rather than fungi in transit due to environmental exposure, including diet. Analysis of consecutive samples from the same individual(s) (similar to the approach by Scanlan and Marchesi (2008)) will assist in identifying which fungi are stable and probable colonisiers. Similar to other studies, the investigators highlight the disparate findings resulting from the use of culture-dependent and culture-independent analyses; culture may be a way of identifying which ones of the many fungi detected by PCR that are actual colonisers.

3) We still don’t know much about what to expect when we take an approach like this. In the present study, multiple primer pairs were put into use, and 11 primer pairs yielded PCR products. The primer pairs amplified products of different lengths (some of them covering the complete SSU rDNA (18S)), and large products can sometimes be difficult to amplify and/or sequence for a variety of reasons; also preferential amplification may be a limiting factor. What would sometimes be useful is an in-silico analysis of the spectrum of organisms covered – at least theoretically - by each set of primers. In the papers I’ve seen so far aiming to display the eukaryotic diversity in human stool, Blastocystis has been a consistent finding, while Dientamoeba fragilis, which, at least in Denmark is almost as prevalent as Blastocystis (in some cohorts even more prevalent) and can be seen in co-infection, has not been reported so far. When you are presented with a list like the one presented by Hamad et al., you are inclined to believe that this list is exhaustive, but I think in-silico analysis data on such broad-specificity primers used for the detection of eukaryotic DNA would help us validate the use of these primers. Another approach to test the applicability of this methodology is to construct samples of DNA from known organisms in different ratios... and then test how the primers and cloning perform. What is also important is the very method of DNA extraction... obviously, our ability to detect DNA from any organism relies on our ability to extract DNA from it.

4) The study of micro-eukaryotes and their roles in health and disease includes first and foremost knowledge about which species and lineages that can be found and which ones that are the most common. Molecular methods are needed to identify the organisms in our intestine, since for instance parasites that look the same (morphological identity) can be genetically diverse with differing abilities to cause disease. We know from studies of micro-eukaryotes in ruminants that for instance some ciliates can be directly beneficial to the host, while others - such as cryptosporidia - are virtually obligate pathogens causing watery diarrhoea. Moreover, some organisms, including micro-eukaryotes, may be extremely difficult to culture even short-term, and also microscopy has limitations.

While we are still searching for virulence genes and other effector proteins in common micro-eukaryotes such as Blastocystis and Dientamoeba fragilis which could potentially cause disease directly, we also need to look for more indirect effects. Although much lower in numbers than our bacteria, (some) micro-eukaryotes may predate on beneficial bacteria to an extent where dysbiosis is reached. "Defaunation" of the intestine is speculated to be associated not only with impaired absorption of nutrients, but also with the development of severe disesases such as colon cancer and if micro-eukaryotes are able to skew our flora, this may have indirect impact on our health; many of our commensal bacteria are essential to some of our vital body functions, - indeed our intestinal flora can be viewed as a separate organ (see previous blog posts).

In the era of "omics" and "ngs" tools, it is interessesting to see a paper on global microbiotic diversity using a "conventional" cloning and sequencing approach in 2012. It may be one of the last papers of its kind?

To sum up: it is clear that a healthy intestine may be populated by a variety of micro-eukaryotes and future studies of the structure and function of the intestinal microbiome including micro-eukaryotes will help us understand their role in health and disease.

Let me end this post by uploading an image depicting "A Tree of Eukaryotes" (including Blastocystis) from an excellent protist blog by a colleague - my rendition here is practically useless, but I hope it might tease you to go and look at it in detail on "Welcome to the Ocelloid" by Psi Wavefunction.


Further reading:

Hamad I, Sokhna C, Raoult D, & Bittar F (2012). Molecular detection of eukaryotes in a single human stool sample from senegal. PloS one, 7 (7) PMID: 22808282

Pandey PK, Siddharth J, Verma P, Bavdekar A, Patole MS, & Shouche YS (2012). Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers. Journal of biosciences, 37 (2), 221-6 PMID: 22581327

Scanlan PD, & Marchesi JR (2008). Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. The ISME journal, 2 (12), 1183-93 PMID: 18670396

Thursday, July 12, 2012

10,000 views and a Blastocystis Salute!

I've been writing this blog since late March, and today this blog was visited by viewer #10,000. I think that calls for a salute!

And what could be more appropriate than a piece of music attributed to Blastocystis? Please click here and read and listen for yourselves! And by the way: This is not the only orchestral work that has been written with Blastocystis in mind...

(Please note that this blog can now be accessed simply via http://blastocystis[dot]net - thanks for visiting!)

Tuesday, July 10, 2012

Blastocystis Culture in Jones' Medium

Upon request I have now posted the protocol on one of the simplest media used for Blastocystis culture, Jones' Medium, - please go to the tab (page) "Lab Stuff".

You can read about Blastocystis culture in some of my other blog posts, use the search box or the labels feature.

Please be aware that this is for xenic culture only - i.e. culture in the presence of bacteria. It's quick, inexpensive, very reliable (at least for human samples) and isolates can be kept this way for months/years - all you need is an incubator.

Extracting DNA from cultures and using it for subtyping usually yields excellent results.

I have never tried to cryopreserve (freeze down) Blastocystis using Jones' Medium, but it is possible (at least when Robinson's Medium is used).

More reading:

Stensvold CR, Arendrup MC, Jespersgaard C, Mølbak K, & Nielsen HV (2007). Detecting Blastocystis using parasitologic and DNA-based methods: a comparative study. Diagnostic microbiology and infectious disease, 59 (3), 303-7 PMID: 17913433

And, if you are interested in culture of intestinal protists in general, why not look up

Clark CG, & Diamond LS (2002). Methods for cultivation of luminal parasitic protists of clinical importance. Clinical microbiology reviews, 15 (3), 329-41 PMID: 12097242

Saturday, July 7, 2012

Blastocystis Nutrition

A reader of this blog asked me about the nutritional requirements of Blastocystis and whether I thought the parasite can be eradicated by fasting.

Given my background (I'm not a dietitian for starters), I guess my best way of approaching this is by drawing on my experience from the lab. When we diagnose Blastocystis, we have multiple methods to choose from, some of which are better than others (please look up previous posts here for more information). Short term (i.e. 24-48 h) in-vitro culture at 37 °C in Jones' medium is almost as sensitive as PCR (molecular detection). This means that if viable Blastocystis is present in a faecal sample, then it will most probably "come up" in culture, which means that in a day or two, we will be able to detect those "characteristically non-characteristic" soap bubble structures (the vacuolar stage) by light microscopy of a small portion of the culture - they will be all over the place!

So, what's Jones' medium? Well, Blastocystis can be cultured in a variety of different media, some of which are very primitive. Jones' medium is probably one of the simplest media, and consists mainly of electrolytes, yeast extract (contains nucleic acids) and horse serum (containing lipids). Importantly, we don't even have to add starch to the medium, when we culture Blastocystis xenically (i.e. under non-sterile conditions and this is what we always do when using culture diagnostically). Blastocystis has also been grown in a saline-serum medium, again in the presence of bacteria.

Apart from providing the anaerobic environment required for Blastocystis to thrive, bacteria most probably constitute a significant source of nutrients for the parasite. We can consistently keep strains of Blastocystis in xenic culture for weeks, months, years, observing vigorous growth, and it is clear that the bacteria and the simple medium supply nutrients in abundance. I have never managed to axenise (i.e. eliminate bacteria from) a culture, but others have been successful at times. One of the pioneers in Blastocystis research, Charles H. Zierdt, noted that the axenisation of Blastocystis usually takes weeks/months with a continuous reduction of bacterial numbers and species, until one species, usually a Bacteroides sp., remains; elmination of the last bacterial species may or may not result in axenisation, simply depending on the need for bacterial support. One of our future goals is to characterise the bacterial flora in individuals with and without Blastocystis.

I believe that even during fasting, Blastocystis will have plenty of access to essential nutritional components. It is possible that fasting may impact the intestinal bacterial flora, and if Blastocystis is dependent on a certain bacterial flora, it may be so that the parasite can be "manipulated" by manipulating the intestinal flora.

Useful reading:

Clark CG, & Diamond LS (2002). Methods for cultivation of luminal parasitic protists of clinical importance. Clinical microbiology reviews, 15 (3), 329-41 PMID: 12097242
 
Zierdt CH (1991). Blastocystis hominis--past and future. Clinical microbiology reviews, 4 (1), 61-79 PMID: 2004348

Wednesday, July 4, 2012

Share Your Experience

It is a fact that a lot of people with diarrhoea, IBS and other intestinal symptoms are diagnosed with Blastocystis, and that sometimes drugs are prescibed with the aim to obtain clinical and microbiological improvement. While there is no specific drug against Blastocystis, a lot of different ones (see previous posts) are used in order to try and eradicate the parasite. Since these drugs differ from country to country in terms of availability and since there is no consensus as to which drug(s) to use, it is of great importance that people who have been diagnosed with Blastocystis and who have received treatment share their experience. We need information on what drugs that result in partial or complete alleviation of symptoms (clinical improvement) and that are capable of clearing the parasite from the gut.


Facebook has a forum (Blastocystis sp. (B. hominis and sp.) where there is a very active debate going on just on this. It may be so that you want to share your view/experience there; you can also mail your story to parasitologyonline [at] gmail dot com.

Thanks.