Showing posts with label research. Show all posts
Showing posts with label research. Show all posts

Wednesday, December 4, 2013

This Month in Blastocystis Research (NOV 2013)

Few commercial kits are available for detection of Blastocystis. One of them is the ParaFlorB kit developed by Boulder Diagnostics which uses a monoclonal antibody to detect Blastocystis-specific antigen. We are currently testing this kit in our lab, and I hope to be able to get back with a summary of our experience once the evaluation has finished. Another kit is the EasyScreenTM Enteric Parasite Detection Kit (Genetic Signatures, Sydney, Australia), which was recently evaluated by some of my Australian colleagues (Stark et al., 2013). In this case, Blastocystis has been included in a panel testing for 5 parasitic genera, the other ones being Giardia, Cryptosporidium, Entamoeba, and Dientamoeba, which makes it interesting in a clinical microbiology context, - at least for research purposes.

It can certainly be discussed whether both Dientamoeba and Blastocystis should be part of routine screening for single-celled intestinal parasites. For some years, we have included Dientamoeba in a PCR panel also consisting of Cryptosporidium, Giardia and Entamoeba, but we are about to remove it from this panel. This does not mean that we will not be testing for Dientamoeba; it only means that we will offer testing for Dientamoeba as a separate analysis, in line with our tests for Blastocystis.

According to the study, the kit performs quite well with the only major impediment being the fact that it does not enable differentiation between pathogenic and apathogenic species of Entamoeba; another drawback is the fact that it does not enable detection of the more rare protozoa, such as Cystoisospora and Cyclospora (and I would also mention microsporidia and maybe Balantidium coli). Also, I might be a little worried that the kit will not pick up all species and genotypes of Cryptosporidium, - in fact little was done to challenge the kit in the evaluation. Regarding Cryptosporidium, only C. hominis and C. parvum were tested. In Sweden, at least 10% of all human cryptosporidiosis is due to non-hominis and non-parvum species and genotypes. This is an observation that has led me to revisit our own Cryptosporidium real-time PCR. With help from Welsh and Swedish colleagues I managed to establish quite a broad panel of different Cryptosporidium species and genotypes, and much to my surprise, our 'old' real-time PCR failed to detect the vast majority of these... which means that this Cryptosporidium PCR was far from genus-specific. So, I set out to design a genus-specific PCR which is now being integrated with our Giardia real-time PCR in a duplex assay.
Anyway, similar to Cryptosporidium, many species of Blastocystis - the so-called subtypes - can colonise and infect humans. In the evaluation of the EasyScreen kit, only subtypes 1, 3, and 4 were used to challenge the kit, and so, it is not known whether the kit also detects other subtypes found in humans (ST2, ST5, ST6, ST7, ST8, and ST9).

For those interested in these diagnostic multiplex systems, please also visit a previous blog post.

Anastasios Tsaousis and his Canadian group in Halifax had a paper out just now in Eukaryotic Cell expanding their work on the evolution of the cytosolic iron/sulfur cluster assembly machinery in Blastocystis spp. and other microbial eukaryotes. This type of work is crucial for obtaining a deeper understanding of the metabolism of Blastocystis and to understand how it has evolved and how it potentially differs from other eukaryotes.  Apparently, Iron-sulfur cluster-containing proteins and their biosynthetic machinery in single-celled parasites are remarkably different from those in their mammalian hosts and they therefore represent a potentially relevant target for the development of novel chemotherapeutic and prophylactic agents against parasite infections. For those interested in iron-sulfur clusters in protists in general, a review was published in Advances in Parasitology some weeks ago (please see cited literature).

There is paper out on fasciolosis and co-infections, including Blastocystis, and in that paper it appears that nitazoxanide may be able to eradicate Blastocystis. However, only three persons were treated, and I'm not sure that the diagnostic tests used would have picked up light infections of Blastocystis.

Speaking of treatment: Another paper has appeared from the highly productive team in Sydney, - this time on treatment failure in patients with chronic Blastocystis infection and first-authored by Ms Tamalee Roberts, whom I was so fortunate to spend some time with during the recent congress in Copenhagen. The paper is a little difficult to follow, particularly since nothing is mentioned in the Materials and Methods section on the choice of treatment and treatment strategies in general, but then again, the paper is based on a string of individual (groups of) cases with different kinds of treatment approaches and various backgrounds. I really like the fact that the authors are looking at multiple cases and also that have included a few patients receiving the Triple Therapy (nitazoxanide, furazolidone, secnidazole), which appears to have no major clinical efficacy. The paper also confirms the uselessness of metronidazole when it comes to eradicating Blastocystis. What I could have wished for is that the authors had been able to pursue the microbiological effect of treatment in each of the cases; only in some cases do we get to know about clearance/persistence of Blastocystis. Also, here at the SSI we sometimes wonder, whether persistence of symptoms after treatment may in some cases reflect adverse effects of the treatment (including perturbation of intestinal flora), in which case even randomised controlled treatment (RCT) studies are difficult to design and interpret, unless very clear case definitions and inclusion criteria are available. Hence, for RCT studies I think it is pertinent only to include patients with very similar symptoms (and possibly microbiomes!); given the prevalence of Blastocystis, this shouldn't be too difficult.

Regarding my most recent blog post, I have noticed that it caused quite a stir! I did anticipate some kerfuffle though. But fact is that we have gradually been able to collect so much data from different, independent studies, and the trend appears clear. We now need to investigate what this means, and whether this is something that can be exploited.

There will be no DEC 2013 version of 'This Month in Blastocystis Research' - instead I plan on doing a 'Blastocystis Highlights in 2013' post in line with last year's. Suggestions for significant papers/contributions are welcome!

Cited literature:

Ali V, & Nozaki T (2013). Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. Advances in Parasitology, 83, 1-92 PMID: 23876871

Roberts T, Ellis J, Harkness J, Marriott D, & Stark D (2013). Treatment failure in patients with chronic Blastocystis infection. Journal of Medical Microbiology PMID: 24243286

Stark D, Roberts T, Ellis JT, Marriott D, & Harkness J (2013). Evaluation of the EasyScreen™ Enteric Parasite Detection Kit for the detection of Blastocystis spp., Cryptosporidium spp., Dientamoeba fragilis, Entamoeba complex, and Giardia intestinalis from clinical stool samples. Diagnostic Microbiology and Infectious Disease PMID: 24286625

Tsaousis AD, Gentekaki E, Eme L, Gaston D, & Roger AJ (2013). Evolution of the Cytosolic Iron/Sulfur cluster Assembly machinery in Blastocystis sp. and other microbial eukaryotes. Eukaryotic Cell PMID: 24243793
 
Zumaquero-Ríos JL, Sarracent-Pérez J, Rojas-García R, Rojas-Rivero L, Martínez-Tovilla Y, Valero MA, & Mas-Coma S (2013). Fascioliasis and intestinal parasitoses affecting schoolchildren in atlixco, puebla state, Mexico: epidemiology and treatment with nitazoxanide. PLoS Neglected Tropical Diseases, 7 (11) PMID: 24278492

Tuesday, November 5, 2013

A Shift of Paradigm in Blastocystis Research? Free paper in Trends in Parasitology!

As mentioned earlier, Dr Pauline Scanlan and I put together an opinion for Trends in Parasitology. This paper may possibly be one in a string of research and review papers heralding a shift of paradigm in Blastocystis research. I hope that it will stimulate the debate about the clinical significance of Blastocystis, and it can be downloaded for free all of this month; please go here for a free copy (go and look in the right side bar in the 'Featured Articles' section; there you will also find a free copy of the review on foodborne parasites mentioned in my previous blog post!).

Reference:

Scanlan PD, & Stensvold CR (2013). Blastocystis: getting to grips with our guileful guest. Trends in Parasitology PMID: 24080063

Friday, September 27, 2013

This Month In Blastocystis Research (SEP 2013)

This month has been extremely busy, and I've been preoccupied with networking, meetings and conferences.

I want to thank the arrangers of the Scandinavian-Baltic Society for Parasitology (SBSP) meeting (which was this year merged with The 8th European Congress of Tropical Medicine & Tropical Medicine)  for arranging a conference session on 'Intestinal Protists - Diagnostic Tools and Emerging Trends', which I was very honoured to chair. One of the four talks was unfortunately cancelled, but the rest of the talks were centred on Blastocystis, and due to great speakers and a very engaged and experienced audience, it turned out to be an extremely interesting and awarding session, sporting topics such as in-vitro susceptibility testing, subtype distribution in different cohorts, diagnostics, and 'Blastomics' advances. The conference took place in the Tivoli Congress Center in Copenhagen. Excellent facilities, but apparently catering other than tap water, tea + coffee could not be accommodated in the congress budget; but then again, it was a big meeting with more than 1,000 people registered (unconfirmed). Anyway, I look forward to more meetings and symposia focusing on Blastocystis! For more on this, stay tuned!

PubMed-wise there is not really much to include in the 'This Month in Blastocystis Research' series though, and I think I'll skip it this time. However, for those with an insatiable appetite for scientific papers on Blastocystis, I have very good news: The London School of Hygiene & Tropical Medicine Online Research Library, which can be accessed here, apparently offers free download of accepted papers (i.e. the original files accepted by the various journals and not the printed versions). A search on Blastocystis renders about 25 publications (not of all of which are specifically on Blastocystis, though), so there should be plenty to read...

Thanks to our excellent librarian here at the SSI, my entertainment for the weekend will be 'Studies on Human Intestinal Protozoa' published in Acta Medica Scandinavica (Supplementum LXX) in 1935 by Ruth Svensson - her doctoral thesis dedicated to Dr Clifford Dobell...



Sunday, September 8, 2013

Fellowships in Blastocystis Research

We are continually looking into the opportunity for funding for research in Blastocystis and we are on the lookout for young researchers with a MSc or PhD degree who want to spend at least a couple of years in Blastocystis research. Right now, taking an omics approach to studying the clinical significance of Blastocystis is extremely relevant of course, given the amount of genetic diversity of the parasite, its apparent association to groups of bacteria/bacterial richness, its varied distribution across different cohorts, and the general availability of ngs technology and data pipelines.

I'm going to focus my next funding application on the integration of metagenomics, metabolomics, comparative genomics, and transcriptomics, and I'm hoping to find one or two persons with track records documenting extensive experience with one or more of these disciplines and who take an interest in parasites/parasitic protists in general and/or in Blastocystis in particular.

Please note that this is NOT a job offer, but merely an invitation to get into some sort of a dialogue. What we can offer is access to samples, strains, technology, and a Blastocystis-centred network.

Please do not answer in the comments section, but contact me directly (mail/phone) for further info + expression of interest. You'll find a link to my contact details in the previous blog post. Thanks.

Wednesday, July 17, 2013

ICOP XIV in Vancouver 28 July to 2 August 2013

The International Congress of Protistology (ICOP) takes place every four years, and so the 14th ICOP takes place from the 28th of July to the 2nd of August in Vancouver, Canada.

Most single-celled parasites infecting humans are known as 'protozoa', but Blastocystis does not belong to this group of organisms; meanwhile, protists comprise both protozoa along with a multitude of other very diverse species, including the Stramenopiles, to which Blastocystis belong. Protists include both uni- and multi-cellular eukaryotic organisms and are distinguished from animals, fungi and plants by a simpler cellular organisation.

The conference abstract book can be downloaded here, and presents a perplexing multitude of very interesting and diverse abstracts. There are four abstracts on Blastocystis alone, and two of them are presented by Dr Roger's group in Halifax, Canada + their international colleagues.


Phylogenomic analyses of large-scale alignments enable the outlining  of evolutionary relationship among major eukaryotic lineages and are highly facilitated by recent technological advances; several abstracts deal with such analyses. Eme et al. (Roger's group) present additional observations from an important phylogenomic study of Blastocystis sp. ST1 reiterating the importance of lateral gene transfer in enabling Blastocystis to adapt to a parasitic life style. Gentekaki et al. (Roger's group) present data on the draft genome of Blastocystis sp. ST1. Until recently, only one Blastocystis genome was available, namely that of ST7. The present data show remarkable differences between the ST1 draft genome and the ST7 genome. While the genome of ST7 comprises 18.8 MB, the genome of ST1 is only 14.0 MB long, and apparently there's  virtually no synteny among the two genomes! Almost 30% of the 5,637 predicted ST1 genes had no homologues in ST7. What is more: 'Orthologous proteins shared by the two genomes are only 51% identical on average. The predicted secreted protein repertoire also differs significantly; ST7 possesses ~300 whereas ST1-NandII has only 129.' Indeed, it appears that Blastocystis comprises some extremely diverse organisms! We are still trying to explore the clinical implications of this...

Alison Jacob, Graham Clark, and I contribute with an abstract on comparative analyses of 8 mitochondrion-like organelle (MLO) genomes from 5 subtypes. Contrary to the nuclear genomes, there is complete synteny and homology between the subtypes at MLO level, although the sequences diverge by up to 25%.

Tamalee Roberts and colleagues present data from analysis of 438 samples from a staggering 38 species in Australia. They found Blastocystis in 18 species, including kangaroos, wallaroos, snow leopard, and ostrich, and obtained subtype data from a total 80 samples.

The genetic universe of  Entamoeba is expanding quickly in these years. Silberman and colleagues (Arkansas, USA) provide data from analysis of Entamoeba from insects such as honeybees, cranefly larvae and multiple cockroach and beetle species. There is no information on any pathogenic properties of insect-infecting Entamoeba however.

The abstract book is also a place to learn that marine diatoms are responsible for about one-fifth of global photosynthesis (Armbrust, Seattle, USA) and that photosynthetic marine algae are responsible for 50% of global CO2 uptake (Worden, Moss Landing, USA).

There is quite a few abstracts on protist diversity and how NGS tools allow us to study this in a more comprehensive and exhaustive way and the need for taxonomic standardisation. Protist-barcoding includes metabarcoding (de Vargas, Roscoff, France) and some of the taxonomic challenges related to this are presented by Dr Pawlowski, Geneva, Switzerland.

Similar to Blastocystis, the trypanosomatids (Trypanosoma and Leishmania) cannot be classified according to morphology and host range, hence, molecular markers are warranted, and there's an abstract by Maslov (California, USA) on the general applicability of 'alternative barcoding', namely the use of Spliced Leader (SL) RNA gene repeats.

There is quite a few abstracts on 'rare ciliates' in harsh environments, and I bring your attention also to a previous blog post on extremophilic eukaryotes.

We also learn that free-living protozoa can tell us more about the origins of anaerobic parasites (Simpson, Halifax, Canada). And there is a group setting up a Plasmodium life cycle to study the metabolic steps critical to the malaria life cycle (McFadden, Melbourne, Australia).

There's a really teasing abstract on analysis of surface water samples from Italy, where Angelici et al. have developed a barcoding-like analysis based on ITS 2 and SSU rRNA genes to enable detection of parasites of clinical and epidemiological interest, but there is no information on how exactly the method was designed, and the authors do not list the parasites that they found... I'm not attending the congress myself, so here's hoping for some twitter updates on this...

One could go on and on, - why don't you have a look inside the abstract book yourself?!

Incidentally, Dr Tai from Vancouver, Canada, promts us to help protists getting into pop culture by wearing t-shirts silkscreened by hand using Ernst Haeckel's diagrams of phytoplankton and light micrographs of parabasalids! Don't know exactly how to get hold of these, but googling 'Ernst Haeckel' and 'phytoplankton' might get you started (go for Google images).

For those interested in protists (and art!), I recommend the blog 'The Ocelloid'. 

Suggested reading:

Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, Viscogliosi E, Brochier-Armanet C, Couloux A, Poulain J, Segurens B, Anthouard V, Texier C, Blot N, Poirier P, Ng GC, Tan KS, Artiguenave F, Jaillon O, Aury JM, Delbac F, Wincker P, Vivarès CP, & El Alaoui H (2011). Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biology, 12 (3) PMID: 21439036

Stensvold CR, Lebbad M, Victory EL, Verweij JJ, Tannich E, Alfellani M, Legarraga P, & Clark CG (2011). Increased sampling reveals novel lineages of Entamoeba: consequences of genetic diversity and host specificity for taxonomy and molecular detection. Protist, 162 (3), 525-41 PMID: 21295520

Friday, May 10, 2013

Cell Symposium: Microbiome & Host Health - Lisbon 2013

My colleagues from Statens Serum Institut and I are heading to Lisbon, Portugal, tomorrow morning to attend the Cell Symposium on Microbiome and Host Health (link may be really busy now).

We are bringing a poster displaying some of our work related to our GUT18S project: A Novel Approach For Eukaryotic Phylogenetic Interrogation Of Clinical Samples Using Next Generation Sequencing Of SSU rRNA Genes; a pdf version of the poster can be downloaded here.

The GUT18S work is partly funded by the Marie Curie Actions (FP7) program.

Thursday, May 9, 2013

YouTube Video on Blastocystis Subtyping

For those who want to venture into Blastocystis subtyping - the easy way - I've recorded and uploaded a video on YouTube fyi.




For even more information, please visit a selection of relevant blog posts here.

Friday, April 26, 2013

This Month in Blastocystis Research (APR 2013)

I've been extremely bored all day writing up my evaluation of a (not so interesting) PhD thesis, and I thought I'd spice up my day by introducing a new series of posts on this blog inspired by so many other blogs, namely: This Month in Blastocystis Research! A place for me to go through some of the most recent papers on Blastocystis.

There is paper out by Gould and Boorom who look at the stability of Blastocystis surface antigen over time. They show that detection of Blastocystis by an immunofluorescense assay (IFA) is not hampered after1 year of storage of faecal material in formalin compared to results immediately after the sampling point. Detection of Blastocystis by IFA is something that is not often used (that's my impression, anyway), but makes sense in cases where laboratory analyses can be performed only weeks-months after sample collection (e.g. during field work), in which case samples need to be preserved. We usually, however, recommend storing faecal material in (70%) ethanol (in the relationship 1 part faecal sample to 4 parts of ethanol), where the sample is mixed with the ethanol initially by vortexing the tube (typically a 2 mL Eppendorf tube) for 5-10 min, and subsequently keeping the tubes away from light until further processing. Importantly, in contrast to formalin-fixed stool, ethanol-fixed stool can be made highly suitable for PCR by just washing the samples x3 in PBS prior to DNA extraction. An example of this methodology can be seen in our study of Blastocystis in members of the Tapirapé tribe in Mato Grosso, Brazil (go here for a free download).

I'd wish that Gould and Boorom had validated their findings by running a PCR on the samples too (specificity and sensitivity testing). The IFA assay was also used in a publication from 2010 by Dogruman-Al et al., who found a diagnostic sensitivity of the IFA assay of 86.7% compared to culture; also here, adding PCR would have been relevant to better determine the diagnostic qualities of the IFA assay.

I was lucky to be involved in field work in the Lao PDR in 2003 conducted by regional WHO authorities; preserving and analysing faecal samples for parasites by microscopy (Kato Katz) and - later - PCR was what we did!

Adding to the endless row of cross-sectional prevalence papers, there is an article out just now by Abdulsalam et al. (2013) on Prevalence, predictors and clinical significance of Blastocystis sp. in Sebha, Libya (free for download here). The study used culture (Jones' medium) as diagnostic modality and confirmed the existence of frequent asymptomatic carriage. The authors used questionnaire info and multivariate statistical analysis to identify risk factors for Blastocystis carriage among 380 individuals aged 1-75, and what I find really interesting is that they found that participants aged > 18 years were much more prone to having Blastocystis than participants < 18 years (P < 0.001). This is something that we see in Denmark too, and I'm currently trying to collect "sufficient proof"! Whether this is an age accumulation effect due to the chronicity of colonisation remains to be investigated. The authors also found that carriers were more likely to experience symptoms than those who were not carriers (P < 0.001), mainly abdominal pain (P < 0.001), but notably not diarrhoea (P = 0.117).
It's a pity that molecular data was not included the study from Libya. Incidentally, our group recently published subtype data from Sebha, Libya, and it appears that Blastocystis found in humans in Libya mainly belongs to ST1, whereas ST3 is often the most common subtype in most other countries, and what is more: ST4 appears virtually absent in Libya and the rest of Africa... But let's see: The investigators might have more data up their sleeve waiting to be published...

May I also again draw your attention to our recent paper on Blastocystis in non-human primates, in which we find that despite the fact that there is a great overlap of subtypes in human and non-human primates, it appears that ST1 and ST3 strains found in non-human primates differ genetically from those found in humans, indicating cryptic host specificity. We have additional data supporting the theory that Blastocystis in humans is a result of human-to-human transmission (anthroponotic) rather than animal-to-human (zoonotic) transmission. Which is really interesting, since the theory of zoonotic transmission of Blastocystis has been heavily (I dare not say purported, so I'll say) propagated. Having said that, I think we still need to look much deeper into barcoding of Blastocystis from pets and other synanthropic animals before we can make more poignant conclusions.

And, finally, yet another add for our recent review on Recent Development in Blastocystis Research!

Please note that I'm happy to take suggestions for future posts, and I'd also like to encourage guest blogging!

Suggested reading:

Abdulsalam AM, Ithoi I, Al-Mekhlafi HM, Khan AH, Ahmed A, Surin J, & Mak JW (2013). Prevalence, predictors and clinical significance of Blastocystis sp. in Sebha, Libya. Parasites & Vectors, 6 PMID: 23566585

Alfellani MA, Jacob AS, Perea NO, Krecek RC, Taner-Mulla D, Verweij JJ, Levecke B, Tannich E, Clark CG, & Stensvold CR (2013). Diversity and distribution of Blastocystis sp. subtypes in non-human primates. Parasitology, 1-6 PMID: 23561720

Alfellani MA, Stensvold CR, Vidal-Lapiedra A, Onuoha ES, Fagbenro-Beyioku AF, & Clark CG (2013). Variable geographic distribution of Blastocystis subtypes and its potential implications. Acta Tropica, 126 (1), 11-8 PMID: 23290980

Clark CG, van der Giezen M, Alfellani MA, & Stensvold CR (2013). Recent developments in Blastocystis research. Advances in Parasitology, 82, 1-32 PMID: 23548084

Dogruman-Al F, Simsek Z, Boorom K, Ekici E, Sahin M, Tuncer C, Kustimur S, & Altinbas A (2010). Comparison of methods for detection of Blastocystis infection in routinely submitted stool samples, and also in IBS/IBD Patients in Ankara, Turkey. PloS One, 5 (11) PMID: 21124983 

Gould R, & Boorom K (2013). Blastocystis surface antigen is stable in chemically preserved stool samples for at least 1 year. Parasitology research PMID: 23609598

Malheiros AF, Stensvold CR, Clark CG, Braga GB, & Shaw JJ (2011). Short report: Molecular characterization of Blastocystis obtained from members of the indigenous Tapirapé ethnic group from the Brazilian Amazon region, Brazil. The American Journal of Tropical Medicine and Hygiene, 85 (6), 1050-3 PMID: 22144442

Monday, April 15, 2013

Recent Developments in Blastocystis Research

I would like to draw your attention to an open access link to our 2013 review on Recent Developments in Blastocystis Research; please go here to read/download the paper.

Here's the abstract:

Blastocystis is a common parasite of the human large intestine but has an uncertain role in disease. In this review, we appraise the published evidence addressing this and its weaknesses. Genetic diversity studies have led to the identification of numerous subtypes (STs) within the genus Blastocystis and, recently, methods for studying variation within STs have been developed, with implications for our understanding of host specificity. The geographic distribution of STs is summarised and the impact this may have on investigations into the role of the organism in disease is discussed. Finally, we describe the organelle and nuclear genome characteristics and look to future developments in the field.


Wednesday, April 10, 2013

Blastocystis Hits The 1,000 Entry Mark In PubMed

Yesterday, the number of Blastocystis entries in PubMed reached 1,000! PubMed is a public resource comprising more than 22 million citations for biomedical literature from MEDLINE, life science journals, and online books.

In comparison, there are currently 7,641 entries on Entamoeba, 6,630 on Cryptosporidium and 235 entries on Dientamoeba.


I plan to introduce the "Hall of Fame in Blastocystis Research" in a future post, but already now I can reveal that the researcher with most Blastocystis-related publications is Dr Hisao Yoshikawa according to Web of Science (WoS), which currently returns 895 hits on a search on Blastocystis; Dr Yoshikawa has at least 43 publications on Blastocystis alone (WoS), and at least 37 Blastocystis-specific peer-reviewed journal articles (PubMed) since 1987.

Monday, January 14, 2013

A Penny For Your Thoughts

So, what should we do about Blastocystis? What do we want to know?

I believe the imminent answer to the latter question is easy: We want to know whether it’s pathogenic, whether we should treat it and how. But I also think that there are many other interesting aspects of Blastocystis which are also of broad interest to the general public, namely: How about the many cases of asymptomatic Blastocystis carriage? What does Blastocystis do in our guts? Could it have any potentially beneficial impact on our health?

Given the fact that Blastocystis has not been implicated in any outbreaks (admittedly: I guess that no one actually ever looked for Blastocystis in outbreak investigations... except for me!), I reckon that the chance of it being involved in acute diarrhoea is small. So, in that respect it's very different from the other intestinal protists such as Giardia, Cryptosporidium, Cyclospora, microsporidia, even Entamoeba histolytica. It's actually more reminiscent of helminth infections, which are are often chronic, and when light hardly give rise to symptoms (depending on species that is!).So I'm more thinking along the lines of co-evolution, adaptation, etc.

Maybe future research will call for a shift in paradigm, but until then I think that we should do what we already can, just at a larger scale and see where it takes us, namely: